In this research, an Adaptive Distributed Inter Frame Space (ADIFS) has been proposed for IEEE 802.11 Medium Access Control (MAC) protocol. The aim of this approach is to improve Quality of Services (QoS) for IEEE 802...In this research, an Adaptive Distributed Inter Frame Space (ADIFS) has been proposed for IEEE 802.11 Medium Access Control (MAC) protocol. The aim of this approach is to improve Quality of Services (QoS) for IEEE 802.11 MAC protocol in single-hop wireless network. The proposed approach is based on traffic type, Collision Rate (CR), Collision Rate Variation (CRV) and Packet Loss Rate. These parameters are used to adjust the DIFS at runtime. The adjusted DIFS is employed to enhance service differentiation at the MAC layer in single-hop wireless networks. The proposed approach contributes to the enhancement of the average QoS for high priority traffic by 32.9% and 33.4% for the 5 and 10 connections, respectively. While the average QoS for the low priority traffic is improved by 14.3% and 18.2% for the 5 and 10 connections, respectively. The results indicate that, the proposed approach contributes in the enhancement of the QoS in wireless network.展开更多
In this paper, a modified access mechanism named Constrained-send DCF (CDCF) is proposed to improve the performance of IEEE 802.11 DCF protocol. It is found that, in DCF, the transmission probability is higher than th...In this paper, a modified access mechanism named Constrained-send DCF (CDCF) is proposed to improve the performance of IEEE 802.11 DCF protocol. It is found that, in DCF, the transmission probability is higher than the reasonable value when the node number is greater than 4 under basic access scheme or than 17 under RTS/CTS scheme, and it results in serious collision. To avoid collision of high access loading, a constrained-send probability is introduced at the end of each back off procedure for the station transmitting. The performance of this mechanism is analyzed based on a 2-Dimension Markov analytical model, after that the optimum constrained-send probability is derived. Numerical results show that the CDCF mechanism has much better performance than DCF with respect to both system throughput and average packet delay. And under RTS/CTS scheme, although CDCF slightly improve the throughput performance (due to the natural good throughput performance of RTS/CTS-scheme DCF), it leads to a much better average packet delay performance compared to DCF. The CDCF keeps all the features of the IEEE 802.11 DCF protocol and is quite easy to implement.展开更多
文摘In this research, an Adaptive Distributed Inter Frame Space (ADIFS) has been proposed for IEEE 802.11 Medium Access Control (MAC) protocol. The aim of this approach is to improve Quality of Services (QoS) for IEEE 802.11 MAC protocol in single-hop wireless network. The proposed approach is based on traffic type, Collision Rate (CR), Collision Rate Variation (CRV) and Packet Loss Rate. These parameters are used to adjust the DIFS at runtime. The adjusted DIFS is employed to enhance service differentiation at the MAC layer in single-hop wireless networks. The proposed approach contributes to the enhancement of the average QoS for high priority traffic by 32.9% and 33.4% for the 5 and 10 connections, respectively. While the average QoS for the low priority traffic is improved by 14.3% and 18.2% for the 5 and 10 connections, respectively. The results indicate that, the proposed approach contributes in the enhancement of the QoS in wireless network.
基金Sponsored by the National Natural Science Foundation of China(Grant No.60832008)the National S&T Major Project (Grant No.2010ZX03003-002-02)the National Key Basic Research and Development Project (Grant No.2012CB316006)
文摘In this paper, a modified access mechanism named Constrained-send DCF (CDCF) is proposed to improve the performance of IEEE 802.11 DCF protocol. It is found that, in DCF, the transmission probability is higher than the reasonable value when the node number is greater than 4 under basic access scheme or than 17 under RTS/CTS scheme, and it results in serious collision. To avoid collision of high access loading, a constrained-send probability is introduced at the end of each back off procedure for the station transmitting. The performance of this mechanism is analyzed based on a 2-Dimension Markov analytical model, after that the optimum constrained-send probability is derived. Numerical results show that the CDCF mechanism has much better performance than DCF with respect to both system throughput and average packet delay. And under RTS/CTS scheme, although CDCF slightly improve the throughput performance (due to the natural good throughput performance of RTS/CTS-scheme DCF), it leads to a much better average packet delay performance compared to DCF. The CDCF keeps all the features of the IEEE 802.11 DCF protocol and is quite easy to implement.