There is an ocean current in the actual underwater working environment. An improved self-organizing neural network task allocation model of multiple autonomous underwater vehicles(AUVs) is proposed for a three-dimensi...There is an ocean current in the actual underwater working environment. An improved self-organizing neural network task allocation model of multiple autonomous underwater vehicles(AUVs) is proposed for a three-dimensional underwater workspace in the ocean current. Each AUV in the model will be competed, and the shortest path under an ocean current and different azimuths will be selected for task assignment and path planning while guaranteeing the least total consumption. First, the initial position and orientation of each AUV are determined. The velocity and azimuths of the constant ocean current are determined. Then the AUV task assignment problem in the constant ocean current environment is considered. The AUV that has the shortest path is selected for task assignment and path planning. Finally, to prove the effectiveness of the proposed method, simulation results are given.展开更多
针对未知水下环境下的自主水下航行器(autonomous underwater vehicle,AUV)目标搜索问题,传统方法搜索速度慢且以解决二维平面下搜索问题为主,本文提出了一种基于改进RRT(rapid-exploration random tree)的未知三维环境目标搜索算法。...针对未知水下环境下的自主水下航行器(autonomous underwater vehicle,AUV)目标搜索问题,传统方法搜索速度慢且以解决二维平面下搜索问题为主,本文提出了一种基于改进RRT(rapid-exploration random tree)的未知三维环境目标搜索算法。在搜索方面,分别建立了包括目标存在概率地图、不确定度地图、区域遍历度地图在内的实时地图并设定其更新规则,根据搜索目标建立决策函数;在局部规划方面,将滚动规划与改进RRT算法相结合,规划出到搜索决策点的路径。二者的结合,实现了AUV在三维空间下在线实时搜索。仿真表明,该算法具有较强的遍历能力,提高了三维空间下目标搜索的速度。展开更多
基金Project supported by the National Natural Science Foundation of China(Nos.U1706224,91748117,and 51575336)the Creative Activity Plan for Science and Technology Commission of Shanghai,China(Nos.18JC1413000,18DZ1206305,and 16550720200)
文摘There is an ocean current in the actual underwater working environment. An improved self-organizing neural network task allocation model of multiple autonomous underwater vehicles(AUVs) is proposed for a three-dimensional underwater workspace in the ocean current. Each AUV in the model will be competed, and the shortest path under an ocean current and different azimuths will be selected for task assignment and path planning while guaranteeing the least total consumption. First, the initial position and orientation of each AUV are determined. The velocity and azimuths of the constant ocean current are determined. Then the AUV task assignment problem in the constant ocean current environment is considered. The AUV that has the shortest path is selected for task assignment and path planning. Finally, to prove the effectiveness of the proposed method, simulation results are given.
文摘针对未知水下环境下的自主水下航行器(autonomous underwater vehicle,AUV)目标搜索问题,传统方法搜索速度慢且以解决二维平面下搜索问题为主,本文提出了一种基于改进RRT(rapid-exploration random tree)的未知三维环境目标搜索算法。在搜索方面,分别建立了包括目标存在概率地图、不确定度地图、区域遍历度地图在内的实时地图并设定其更新规则,根据搜索目标建立决策函数;在局部规划方面,将滚动规划与改进RRT算法相结合,规划出到搜索决策点的路径。二者的结合,实现了AUV在三维空间下在线实时搜索。仿真表明,该算法具有较强的遍历能力,提高了三维空间下目标搜索的速度。