为增强无人直升机对着舰环境的感知理解,促进其安全高效地实现自主着舰,将ERFNet网络模型应用于无人直升机着舰场景语义分割任务中。首先,结合非对称残差模块和弱瓶颈模块对ERFNet网络模型进行改进,提高运行速度、减少精度损失;其次,利...为增强无人直升机对着舰环境的感知理解,促进其安全高效地实现自主着舰,将ERFNet网络模型应用于无人直升机着舰场景语义分割任务中。首先,结合非对称残差模块和弱瓶颈模块对ERFNet网络模型进行改进,提高运行速度、减少精度损失;其次,利用MultiGenCreator和VegaPrime等技术开发无人机自主着舰仿真系统,并建立无人机自主着舰场景数据集;最后,采用PyTorch深度学习框架实现网络模型,采取模型再训练方法对网络进行学习和训练。实验结果表明,所提网络综合优势明显,平均交并比(Mean Intersection over Union,MIOU)达到76.35%,前向传播时间为22.37 ms。展开更多
文摘为增强无人直升机对着舰环境的感知理解,促进其安全高效地实现自主着舰,将ERFNet网络模型应用于无人直升机着舰场景语义分割任务中。首先,结合非对称残差模块和弱瓶颈模块对ERFNet网络模型进行改进,提高运行速度、减少精度损失;其次,利用MultiGenCreator和VegaPrime等技术开发无人机自主着舰仿真系统,并建立无人机自主着舰场景数据集;最后,采用PyTorch深度学习框架实现网络模型,采取模型再训练方法对网络进行学习和训练。实验结果表明,所提网络综合优势明显,平均交并比(Mean Intersection over Union,MIOU)达到76.35%,前向传播时间为22.37 ms。