提出一种基于模式聚类和混合模型参数自动选择的图库索引方法。因为传统的EM(Expectation Maximization)算法为混合模型聚类问题中的参数估计提供了一个很好的解决方法,但需要事先指定聚类数,影响了高维数据索引的精度和效率。综合利用...提出一种基于模式聚类和混合模型参数自动选择的图库索引方法。因为传统的EM(Expectation Maximization)算法为混合模型聚类问题中的参数估计提供了一个很好的解决方法,但需要事先指定聚类数,影响了高维数据索引的精度和效率。综合利用改进的CEM2(Component-wise EM of Mixture)混合模型自动选择算法、矢量量化和概率近似的索引机制,在保证准确率同时有效提高了检索效率。展开更多
文摘提出一种基于模式聚类和混合模型参数自动选择的图库索引方法。因为传统的EM(Expectation Maximization)算法为混合模型聚类问题中的参数估计提供了一个很好的解决方法,但需要事先指定聚类数,影响了高维数据索引的精度和效率。综合利用改进的CEM2(Component-wise EM of Mixture)混合模型自动选择算法、矢量量化和概率近似的索引机制,在保证准确率同时有效提高了检索效率。