Aims: To prevent fetal damage by excess oxytocin administration of manually controlled infusion, by automatic and safe increasing infusion setting with monitoring uterine contraction and fetal heart rate. Methods: Sta...Aims: To prevent fetal damage by excess oxytocin administration of manually controlled infusion, by automatic and safe increasing infusion setting with monitoring uterine contraction and fetal heart rate. Methods: Starting infusion level was 2 milliU/ml, as oxytocin sensitivity of a pregnant uterus is unknown, to avoid hyper contraction and fetal bradycardia caused by unexpected excess oxytocin sensitivity. The infusion automatically increased with automatic monitoring of uterine contraction curve, then the increasing stopped when contraction reached to normal labor level, where the infusion level maintained, which continued until delivery, if there is no trouble. However, the infusion continued until expiring all fluid in case of insensitive uterus, where the induction was performed in another day. The infusion stopped automatically when contraction was too strong, or fetal heart rate is abnormal. Thus, oxytocin sensitive case is protected from excess contraction and fetal asphyxia. Results: Normal vaginal delivery was achieved in 28/33 cases (85%), which was more than manually controlled infusion. No case was abnormal in successful oxytocin infusion. Conclusion: The automated technique will be applied to oxytocin labor induction.展开更多
文摘Aims: To prevent fetal damage by excess oxytocin administration of manually controlled infusion, by automatic and safe increasing infusion setting with monitoring uterine contraction and fetal heart rate. Methods: Starting infusion level was 2 milliU/ml, as oxytocin sensitivity of a pregnant uterus is unknown, to avoid hyper contraction and fetal bradycardia caused by unexpected excess oxytocin sensitivity. The infusion automatically increased with automatic monitoring of uterine contraction curve, then the increasing stopped when contraction reached to normal labor level, where the infusion level maintained, which continued until delivery, if there is no trouble. However, the infusion continued until expiring all fluid in case of insensitive uterus, where the induction was performed in another day. The infusion stopped automatically when contraction was too strong, or fetal heart rate is abnormal. Thus, oxytocin sensitive case is protected from excess contraction and fetal asphyxia. Results: Normal vaginal delivery was achieved in 28/33 cases (85%), which was more than manually controlled infusion. No case was abnormal in successful oxytocin infusion. Conclusion: The automated technique will be applied to oxytocin labor induction.