期刊文献+
共找到40篇文章
< 1 2 >
每页显示 20 50 100
Prediction of urban human mobility using large-scale taxi traces and its applications 被引量:48
1
作者 Xiaolong LI Gang PAN +5 位作者 Zhaohui WU Guande QI Shijian LI Daqing ZHANG Wangsheng ZHANG Zonghui WANG 《Frontiers of Computer Science》 SCIE EI CSCD 2012年第1期111-121,共11页
This paper investigates human mobility patterns in an urban taxi transportation system. This work focuses on predicting human mobility from discovering patterns of in the number of passenger pick-ups quantity (PUQ) ... This paper investigates human mobility patterns in an urban taxi transportation system. This work focuses on predicting human mobility from discovering patterns of in the number of passenger pick-ups quantity (PUQ) from urban hotspots. This paper proposes an improved ARIMA based prediction method to forecast the spatial-temporal variation of passengers in a hotspot. Evaluation with a large-scale real- world data set of 4 000 taxis' GPS traces over one year shows a prediction error of only 5.8%. We also explore the applica- tion of the pl^di^fioti approach to help drivers find their next passetlgerS, The sinatllation results using historical real-world data demonstrate that, with our guidance, drivers can reduce the time taken and distance travelled, to find their next pas- senger+ by 37.1% and 6.4% respectively, 展开更多
关键词 urban traffic GPS traces HOTSPOTS human mo-bility prediction auto-regressive integrated moving averagearima
原文传递
基于整合移动平均自回归和遗传粒子群优化小波神经网络组合模型的交通流预测 被引量:25
2
作者 殷礼胜 唐圣期 +1 位作者 李胜 何怡刚 《电子与信息学报》 EI CSCD 北大核心 2019年第9期2273-2279,共7页
针对短时交通流数据的非线性和随机性特点,为提高它的预测精度和收敛速度,该文从模型构建和算法两方面提出一种整合移动平均自回归(ARIMA)模型和遗传粒子群算法优化小波神经网络(GPSOWNN)相结合的预测模型和算法。在模型构建方面,将ARIM... 针对短时交通流数据的非线性和随机性特点,为提高它的预测精度和收敛速度,该文从模型构建和算法两方面提出一种整合移动平均自回归(ARIMA)模型和遗传粒子群算法优化小波神经网络(GPSOWNN)相结合的预测模型和算法。在模型构建方面,将ARIMA模型预测值和灰色关联系数大于0.6的相关性强的前3个时刻的历史数据作为小波神经网络(WNN)的输入,在兼顾历史数据的平稳和非平稳的情况下,进行了模型结构简化。在算法方面,通过遗传粒子群算法对小波神经网络的参数初始值进行最优选取,可使其结果在不易陷入局部最优的条件下加快网络训练收敛速度。实验结果表明,在预测精度方面,该方法的模型明显优于整合移动平均自回归模型和遗传粒子群算法优化小波神经网络,在收敛速度方面,用遗传粒子群算法优化模型明显优于仅用遗传算法优化模型。 展开更多
关键词 短时交通流预测 灰色关联分析法 整合移动平均自回归 遗传粒子群优化小波神经网络
下载PDF
计及温度影响的短期负荷预测时间序列模型 被引量:6
3
作者 万志宏 陈亮 文福拴 《华北电力大学学报(自然科学版)》 CAS 北大核心 2011年第3期61-66,共6页
时间序列模型在国际和国内的短期电力负荷预测中得到了广泛应用。然而,这种方法的一个主要缺点是无法将影响负荷预测的主要因素之一即气象因素考虑进去。在此背景下,首先基于负荷和气温数据建立了负荷预测的回归模型,然后构造了回归模... 时间序列模型在国际和国内的短期电力负荷预测中得到了广泛应用。然而,这种方法的一个主要缺点是无法将影响负荷预测的主要因素之一即气象因素考虑进去。在此背景下,首先基于负荷和气温数据建立了负荷预测的回归模型,然后构造了回归模型残差累积式自回归—滑动平均模型并对回归模型进行修正。最后,用广东电力系统的实际负荷数据说明了所发展的短期负荷预测模型的实际预测效果。计算结果表明所提出的方法可以弥补现有时间序列模型的缺点,有效地提高负荷预测精度。 展开更多
关键词 短期负荷预测 回归模型 时间序列模型 累积式自回归—滑动平均模型
下载PDF
基于组合模型的电网投资能力预测研究 被引量:1
4
作者 朱渝宁 徐晓亮 +3 位作者 赖若麒 王玉珠 胡泽萍 张金良 《供用电》 2023年第7期33-40,56,共9页
随着我国电网投资环境的愈加复杂,准确预测电网企业的投资能力成为管理者制定精准投资决策的重要前提。首先,结合企业内外部环境,从内部财务、经济社会和电力行业3个维度选取影响电网投资能力的因素指标,并对这些指标进行主成分分析,得... 随着我国电网投资环境的愈加复杂,准确预测电网企业的投资能力成为管理者制定精准投资决策的重要前提。首先,结合企业内外部环境,从内部财务、经济社会和电力行业3个维度选取影响电网投资能力的因素指标,并对这些指标进行主成分分析,得到降维后的主成分因子。然后,利用多元回归模型、反向传播神经网络模型、差分整合移动平均自回归模型分别对电网投资能力进行预测。最后,基于上述3种单一预测模型构建组合预测模型,并通过非线性规划法求取单一预测模型所占的权重系数。结果表明,与单一预测模型相比,组合预测模型对电网投资能力进行预测时能实现更高的预测精度,为电网投资决策与管理提供了参考。 展开更多
关键词 多元回归 反向传播神经网络 差分整合移动平均自回归 组合预测 电网投资能力
下载PDF
几种统计预测方法对1998年南京降水的跨季节预测试验及分析 被引量:4
5
作者 胡凤良 王丽琼 +1 位作者 左瑞亭 张舰齐 《气候与环境研究》 CSCD 北大核心 2017年第1期23-34,共12页
对1998年南京降水分别设计并开展了求和自回归滑动平均(Auto-Regressive Integrated Moving Average,ARIMA)模型预测、经验模态分解(Empirical Mode Decomposition,EMD)预测和基于Hilbert变换(Hilbert Transformation,HT)的幅频分离预测... 对1998年南京降水分别设计并开展了求和自回归滑动平均(Auto-Regressive Integrated Moving Average,ARIMA)模型预测、经验模态分解(Empirical Mode Decomposition,EMD)预测和基于Hilbert变换(Hilbert Transformation,HT)的幅频分离预测等3种跨季节统计预测试验。结果表明:ARIMA模型预测结果存在明显的系统性误差且对夏季的降水突变现象预测困难;EMD分解预测的结果虽在降水演变趋势上有明显提高,但仍未能预测出夏季的强降水突变现象,究其原因可能是对高频分量预测效果不好所致;而基于Hilbert变换的幅频分离预测方法能够对各模态分量的瞬时频率和瞬时振幅实施隔离预测,消除两者的相互影响,显著改善高频模态的预测效果,使得最终预测结果最为理想,不仅具有最高的趋势相关性和最小的偏差,而且还较好地预测出了夏季两次强降水过程。不仅如此,在对2003年的降水预测验证中,基于Hilbert变换的幅频分离预测方法同样具有最好的预测效果,表明该方法预测效果较为稳定,为改进跨季节短期气候统计预测技术提供了一个新思路。 展开更多
关键词 短期气候预测 求和自回归滑动平均(arima)经验模态分解(EMD) Hilbert变换(HT) 最小二乘支持向量机
下载PDF
基于误差修正的极端学习机超短期风速预测 被引量:3
6
作者 潘羿龙 丁云飞 《上海电机学院学报》 2017年第6期342-347,372,共7页
超短期风速预测对风电场功率预报系统的建立和运行至关重要。针对具有较大随机波动性的风速预测,研究了一种基于误差修正的极端学习机(ELM)超短期风速预测方法。利用ELM模型对风速进行初步预测,并利用由此得到的误差数据样本建立差分自... 超短期风速预测对风电场功率预报系统的建立和运行至关重要。针对具有较大随机波动性的风速预测,研究了一种基于误差修正的极端学习机(ELM)超短期风速预测方法。利用ELM模型对风速进行初步预测,并利用由此得到的误差数据样本建立差分自回归滑动平均模型(ARIMA),进行误差预测,最后使用预测误差对风速的初步预测值进行补正,从而求得最终预测值。仿真实验结果表明,该方法在风速超短期预测中的可行性及有效性。 展开更多
关键词 风速预测 预测误差补正 极端学习机 差分自回归滑动平均模型
下载PDF
基于ARIMA-BP神经网络模型的桥梁SHM应变预测分析 被引量:1
7
作者 邱卓 胡琼清 +2 位作者 伍伟斌 钟菊芳 万灵 《科技和产业》 2022年第8期392-397,共6页
桥梁结构健康监测的应变监测数据具有较强的趋势性与随机性,为提升数据的预测精度,提出将传统单一的自回归积分滑动平均模型(ARIMA)和BP神经网络预测模型进行加权与组合,并将这两种方法分别运用于江西省某跨江大桥桥梁结构健康监测系统... 桥梁结构健康监测的应变监测数据具有较强的趋势性与随机性,为提升数据的预测精度,提出将传统单一的自回归积分滑动平均模型(ARIMA)和BP神经网络预测模型进行加权与组合,并将这两种方法分别运用于江西省某跨江大桥桥梁结构健康监测系统记录的应变监测数据的预测进行验证。结果表明:仅运用单一模型预测时,BP神经网络的预测效果要优于ARIMA模型;加权与组合模型的预测精度均优于单一模型,其中加权模型及组合模型的残差平方和(SSE)与BP神经网络模型相差最大,分别高达50.23%与49.87%;对比加权模型与组合模型的各项误差指标,发现二者预测模型的预测精度极为接近;单一预测模型的误差包络范围大于其他两类模型,其中ARIMA模型的误差总和约为50με,BP神经网络模型的误差总和约为30με,加权模型的误差总和约为21.09με,组合模型的误差总和约为20.97με。经分析,加权预测模型与组合预测模型均能实现对桥梁SHM应变预测。 展开更多
关键词 结构健康监测(SHM) 自回归积分滑动平均模型(arima) BP神经网络 加权预测 组合预测
下载PDF
基于累积式自回归动平均传递函数模型的短期负荷预测 被引量:19
8
作者 李妮 江岳春 +1 位作者 黄珊 毛李帆 《电网技术》 EI CSCD 北大核心 2009年第8期93-97,103,共6页
针对短期负荷预测,提出了累积式自回归动平均(auto-regressive integrated moving average,ARIMA)传递函数模型的简化建模方法。传递函数模型考虑了干扰因素对因变量的作用,体现了干扰因素中变量间相互影响的关系。其构造灵活,可用较少... 针对短期负荷预测,提出了累积式自回归动平均(auto-regressive integrated moving average,ARIMA)传递函数模型的简化建模方法。传递函数模型考虑了干扰因素对因变量的作用,体现了干扰因素中变量间相互影响的关系。其构造灵活,可用较少的参数建立阶数较高的模型;并且假定值较少,容易得到满足。该文还将温度因素考虑在内,通过算例将传递函数模型和ARIMA模型的预测结果与实际值进行了比较,结果表明采用传递函数改进后的ARIMA模型预测精度提高,预测误差减小,具有较强的实用性。 展开更多
关键词 负荷预测 时间序列 累积式自回归动平均模型 传递函数模型
下载PDF
Application of Seasonal Auto-regressive Integrated Moving Average Model in Forecasting the Incidence of Hand-foot-mouth Disease in Wuhan,China 被引量:16
9
作者 彭颖 余滨 +3 位作者 汪鹏 孔德广 陈邦华 杨小兵 《Journal of Huazhong University of Science and Technology(Medical Sciences)》 SCIE CAS 2017年第6期842-848,共7页
Outbreaks of hand-foot-mouth disease(HFMD) have occurred many times and caused serious health burden in China since 2008. Application of modern information technology to prediction and early response can be helpful ... Outbreaks of hand-foot-mouth disease(HFMD) have occurred many times and caused serious health burden in China since 2008. Application of modern information technology to prediction and early response can be helpful for efficient HFMD prevention and control. A seasonal auto-regressive integrated moving average(ARIMA) model for time series analysis was designed in this study. Eighty-four-month(from January 2009 to December 2015) retrospective data obtained from the Chinese Information System for Disease Prevention and Control were subjected to ARIMA modeling. The coefficient of determination(R^2), normalized Bayesian Information Criterion(BIC) and Q-test P value were used to evaluate the goodness-of-fit of constructed models. Subsequently, the best-fitted ARIMA model was applied to predict the expected incidence of HFMD from January 2016 to December 2016. The best-fitted seasonal ARIMA model was identified as(1,0,1)(0,1,1)12, with the largest coefficient of determination(R^2=0.743) and lowest normalized BIC(BIC=3.645) value. The residuals of the model also showed non-significant autocorrelations(P_(Box-Ljung(Q))=0.299). The predictions by the optimum ARIMA model adequately captured the pattern in the data and exhibited two peaks of activity over the forecast interval, including a major peak during April to June, and again a light peak for September to November. The ARIMA model proposed in this study can forecast HFMD incidence trend effectively, which could provide useful support for future HFMD prevention and control in the study area. Besides, further observations should be added continually into the modeling data set, and parameters of the models should be adjusted accordingly. 展开更多
关键词 hand-foot-mouth disease forecast surveillance modeling auto-regressive integrated moving averagearima
下载PDF
基于非参数GARCH的时间序列模型在日前电价预测中的应用 被引量:16
10
作者 邓佳佳 黄元生 宋高峰 《电网技术》 EI CSCD 北大核心 2012年第4期190-196,共7页
电力市场中电价序列具有较强的波动性、周期性和随机性,以致经常出现价格尖峰,这在很大程度上影响了电价预测的精度。提出了一种基于小波变换和非参数GARCH(generalized auto regressive conditional heteroskedasticity)模型的时间序... 电力市场中电价序列具有较强的波动性、周期性和随机性,以致经常出现价格尖峰,这在很大程度上影响了电价预测的精度。提出了一种基于小波变换和非参数GARCH(generalized auto regressive conditional heteroskedasticity)模型的时间序列模型对日前电价进行预测。利用小波变换将历史电价序列分解重构概貌序列和细节序列,分别建立累积式自回归滑动平均(auto-regressive integrated moving average,ARIMA)模型进行预测,采用非参数GARCH模型对电价序列预测残差的随机波动率进行建模,从而提高对价格波动性的预测能力和ARIMA模型的预测精度。将该模型应用于美国宾夕法尼亚—新泽西—马里兰(Pennsylvania-New Jersey-Maryland,PJM)电力市场的日前电价预测。算例结果表明,非参数GARCH模型可以更好地拟合电价序列剧烈波动的特性,该模型能够提高电价的预测精度。 展开更多
关键词 电价预测 小波变换 累积式自回归滑动平均模型 非参数GARCH模型
下载PDF
基于ARIMA乘积季节模型的中国流行性腮腺炎发病趋势预测分析 被引量:6
11
作者 李平 黄澳迪 +5 位作者 包黎明 程立雪 王富珍 杨宏 马超 尹遵栋 《中国疫苗和免疫》 CSCD 北大核心 2023年第2期174-179,共6页
目的构建自回归求和移动平均(Auto-regressive integrated moving average,ARIMA)乘积季节模型,预测分析新型冠状病毒感染(Coronavirus disease 2019,COVID-19)疫情前后中国流行性腮腺炎(流腮)发病趋势。方法收集2008-2021年中国流腮月... 目的构建自回归求和移动平均(Auto-regressive integrated moving average,ARIMA)乘积季节模型,预测分析新型冠状病毒感染(Coronavirus disease 2019,COVID-19)疫情前后中国流行性腮腺炎(流腮)发病趋势。方法收集2008-2021年中国流腮月报告发病数据,基于2008-2018年数据拟合流腮发病ARIMA乘积季节模型;利用拟合模型预测2019-2021年流腮月发病数,评价预测效果。结果2008-2018年中国流腮发病呈3-5年一次流行高峰,夏季和冬季高发。流腮发病的最优拟合模型为ARIMA(2,1,2)(0,1,1)12,模型的相关参数估计值均具有显著性,其残差序列白噪声检验显示均为白噪声序列。2019年、2020年、2021年流腮月发病数的模型预测值与真实值的相对误差范围分别为1.56%-19.30%、41.24%-360.66%、64.46%-267.61%,平均相对误差分别为6.65%、159.08%、177.39%。结论拟合模型可准确预测COVID-19疫情前中国流腮发病,但对疫情期间的发病预测结果偏差较大;需要补充COVID-19疫情后流腮发病数据以拟合更优的预测模型。 展开更多
关键词 流行性腮腺炎 发病 自回归求和移动平均(arima)乘积季节模型 新型冠状病毒感染 预测
原文传递
基于SSA-Hurst-ARIMA组合模型的船舶柴油发电机组故障特征短期预测
12
作者 梁清政 王浩 +2 位作者 程垠钟 杨天诣 姚钦博 《现代制造技术与装备》 2024年第2期51-54,共4页
为提高船舶柴油发电机组故障特征短期预测精度,建立基于奇异谱分析(Singular Spectrum Analysis,SSA)、Hurst指数、自回归移动平均(Auto-Regressive Integrated Moving Average,ARIMA)的组合预测模型。以某试验中船舶柴油发电机组运行... 为提高船舶柴油发电机组故障特征短期预测精度,建立基于奇异谱分析(Singular Spectrum Analysis,SSA)、Hurst指数、自回归移动平均(Auto-Regressive Integrated Moving Average,ARIMA)的组合预测模型。以某试验中船舶柴油发电机组运行数据为基础,选取增压器滑油压强数据,对比分析单一ARIMA模型、SSA主成分-ARIMA组合模型和SSA-Hurst-ARIMA组合模型的预测效果。结果表明,SSA-Hurst-ARIMA组合模型的预测效果优于单一ARIMA模型和SSA主成分-ARIMA组合模型,更适合应用于船舶柴油发电机组故障特征的短期预测。 展开更多
关键词 船舶柴油发电机组 故障特征 短期预测 奇异谱分析(SSA) HURST指数 自回归移动平均(arima)模型
下载PDF
基于轨道数据对齐的ARIMA模型的轨道不平顺预测 被引量:5
13
作者 朱洪涛 陈品帮 +1 位作者 魏晖 梁恒辉 《振动.测试与诊断》 EI CSCD 北大核心 2019年第3期596-602,674,共8页
轨道几何尺寸数据是在对被测轨道进行检查时得到的,而不同时间的历史数据,由于检查环境和条件存在变动,其数据表现经常伴随着累积里程误差的存在,导致数据存在无法对齐的现象,从而不能精准预测轨道不平顺的发展。针对此问题,提出将多组... 轨道几何尺寸数据是在对被测轨道进行检查时得到的,而不同时间的历史数据,由于检查环境和条件存在变动,其数据表现经常伴随着累积里程误差的存在,导致数据存在无法对齐的现象,从而不能精准预测轨道不平顺的发展。针对此问题,提出将多组原始数据依次以某一步长进行分段验证,以互相关函数相互进行评价,将各组原始数据的里程对齐之后得到有效的观测值。以广铁集团惠州工务段杭深线潮汕站4道K1317+150-K1317+350间的2013-2015年度的历史数据作为试验样本,通过建立自回归积分滑动平均模型(auto-regressive integrated moving average model,简称ARIMA)预测轨道不平顺。结果表明,将轨道几何尺寸原始数据对齐后再进行其不平顺状态的预测研究,可以达到更高的试验精度,其相对误差绝对值的最大值小于5%,样本中相对误差均值为1.75%,适用于工程。 展开更多
关键词 预测 轨道不平顺 arima模型 累积里程误差 对齐 互相关函数
下载PDF
ARIMA算法在工业控制器故障预测的应用 被引量:4
14
作者 冯剑 姚罕琦 +1 位作者 黄啸虎 胡钦炫 《自动化仪表》 CAS 2022年第11期62-67,共6页
提出了一种基于k-medoids算法的自回归积分滑动平均模型(ARIMA)的工业控制器硬件故障预测方法。首先,将控制器每秒的CPU电压、输入/输出(I/O)管脚电压、电源电压这3个特征的实时值作为1个特征向量,用k-medoids算法对每30 s的特征向量进... 提出了一种基于k-medoids算法的自回归积分滑动平均模型(ARIMA)的工业控制器硬件故障预测方法。首先,将控制器每秒的CPU电压、输入/输出(I/O)管脚电压、电源电压这3个特征的实时值作为1个特征向量,用k-medoids算法对每30 s的特征向量进行聚2类操作,求得聚类样本较多的那类聚类中心向量。接着,按照时序将获得的多个聚类中心特征向量作为学习样本,求得每个特征的ARIMA的p、d、q参数,并建立ARIMA。最后,采用每个特征的ARIMA预测其未来的值,并与其阈值比较,进行故障预测。使用一个嵌入了老化电阻的中控ECS700控制器,进行了24 h的试验。试验结果表明,该方法有效,为实现控制器故障预测提供了思路。 展开更多
关键词 自回归积分滑动平均模型 k-medoids 故障预测 控制器 机器学习 时序分析 大数据 工业智能
下载PDF
基于乘积季节模型的GPRS小区流量预测 被引量:4
15
作者 周鑫 张锦 +1 位作者 李果 郑伯峰 《计算机工程》 CAS CSCD 北大核心 2010年第18期76-78,共3页
针对GPRS小区流量预测问题,提出一种基于乘积季节自回归移动平均模型的解决方法。该方法分析GPRS小区流量的变化情况,利用小区流量以天为周期变化的特点,应用该模型进行建模,得到GPRS小区的流量变化预测模型。该预测模型可以根据GPRS小... 针对GPRS小区流量预测问题,提出一种基于乘积季节自回归移动平均模型的解决方法。该方法分析GPRS小区流量的变化情况,利用小区流量以天为周期变化的特点,应用该模型进行建模,得到GPRS小区的流量变化预测模型。该预测模型可以根据GPRS小区过去的流量情况,预测将来某一时间的流量,为提前采取措施保持GPRS小区性能提供一定的决策依据。 展开更多
关键词 GPRS 小区 乘积季节自回归移动平均模型 流量预测
下载PDF
GPRS小区流量预测中时序模型的比较研究 被引量:2
16
作者 周鑫 张锦 +1 位作者 赵研科 王如龙 《计算机应用》 CSCD 北大核心 2010年第4期884-887,共4页
针对通用无线分组业务(GPRS)小区流量预测问题,对几种典型时序预测模型的性能进行了综合分析。在总结时序预测模型使用步骤的基础上,分析了自回归(AR)、自回归移动平均(ARIMA)和乘积季节自回归求和移动平均(ARIMA)模型的性能。首先,对G... 针对通用无线分组业务(GPRS)小区流量预测问题,对几种典型时序预测模型的性能进行了综合分析。在总结时序预测模型使用步骤的基础上,分析了自回归(AR)、自回归移动平均(ARIMA)和乘积季节自回归求和移动平均(ARIMA)模型的性能。首先,对GPRS小区流量的变化情况进行分析;再根据流量的自相关系数和偏相关系数,从不同的角度进行分析,分别得到了流量变化的AR模型和ARMA模型;进而利用小区流量以天为周期变化的特点,得到了流量变化的乘积季节ARIMA模型。最后根据GPRS小区历史流量数据,应用这三种模型预测将来某一时间的流量,并对模型性能进行比较研究。 展开更多
关键词 流量预测 通用无线分组业务小区 自回归模型 自回归移动平均模型 乘积季节自回归求和移动平均模型
下载PDF
基于决策融合的多模型顶板安全预警 被引量:1
17
作者 郝秦霞 张金锁 《中国安全科学学报》 CAS CSCD 北大核心 2015年第1期171-176,共6页
为了对矿井深部开采中煤层巷道的动压规律进行准确的预警预测,采用决策融合的多模型顶板来压预测方法。利用聚合经验模态分解方法(EEMD)对每个传感器监测数据进行模态分解,得到各子模型的多个固有模态函数(IMF)序列;根据模态函数的特点... 为了对矿井深部开采中煤层巷道的动压规律进行准确的预警预测,采用决策融合的多模型顶板来压预测方法。利用聚合经验模态分解方法(EEMD)对每个传感器监测数据进行模态分解,得到各子模型的多个固有模态函数(IMF)序列;根据模态函数的特点,对非线性序列运用支持向量机(SVM)模型,线性序列运用单整自回归移动平均(ARIMA)模型进行预测,再将各子模型中各种预测值合成重构得到各子模型的预测输出;通过统计识别模式将各子模型的预测数据进行归一化决策融合后,在同一个时空坐标系中表示出来。实际应用表明,用多模型融合的预测方法能实现采场顶板动态规律的远期、近期以及实时预测,并能很好地反映动压大变形规律,捕捉顶板灾害的预兆信息。 展开更多
关键词 围岩应力 经验模态分解方法(EEMD) 决策融合 单整自回归移动平均模型(arima) 统计识别模式
下载PDF
高超声速飞行器分解集成轨迹预测算法 被引量:21
18
作者 韩春耀 熊家军 +1 位作者 张凯 兰旭辉 《系统工程与电子技术》 EI CSCD 北大核心 2018年第1期151-158,共8页
针对无动力滑翔高超声速飞行器的轨迹预测问题,提出了分解集成轨迹预测模型。依据运动轨迹的周期跳跃特性,运用先集成再分解的轨迹预测思路,首先将运动轨迹序列分解为具有趋势性、周期性和随机性特征的子序列,再针对每项子序列的特征采... 针对无动力滑翔高超声速飞行器的轨迹预测问题,提出了分解集成轨迹预测模型。依据运动轨迹的周期跳跃特性,运用先集成再分解的轨迹预测思路,首先将运动轨迹序列分解为具有趋势性、周期性和随机性特征的子序列,再针对每项子序列的特征采用相应的子轨迹预测模型,最后将各子轨迹预测模型预测结果的集成作为最终预测值。由于子序列与子轨迹预测模型具有更高的契合度,使得分解集成轨迹预测算法相对于使用单一模型的轨迹预测算法更具优势。仿真实验表明,分解集成轨迹预测算法显著提高了轨迹预测精度。 展开更多
关键词 轨迹预测 无动力滑翔高超声速飞行器 分解集成模型 最小二乘支持向量回归模型 自回归积分滑动平均模型
下载PDF
时间序列分解法在北京市朝阳区细菌性痢疾周报告发病率预测中的应用 被引量:19
19
作者 崔树峰 马建新 李书明 《中国卫生统计》 CSCD 北大核心 2009年第6期583-585,591,共4页
目的使用时间序列分解法建立数学模型对北京市朝阳区细菌性痢疾报告发病率按"周"进行预测,并评价模型的预测效果。方法首先使用时间序列分解法剔除时间序列的季节变动因素(St),然后对剔除季节因素后的时间序列通过模型识别、... 目的使用时间序列分解法建立数学模型对北京市朝阳区细菌性痢疾报告发病率按"周"进行预测,并评价模型的预测效果。方法首先使用时间序列分解法剔除时间序列的季节变动因素(St),然后对剔除季节因素后的时间序列通过模型识别、参数估计及检验、白噪声检验等过程,建立求和自回归移动平均模型(ARIMA),最后将St和ARIMA相乘得到预测模型。结果对朝阳区2008年细菌性痢疾报告发病率建立预测模型为St×ARIMA(2,1,3),预测的平均误差为-0.06,平均相对误差为2.32%。结论时间序列分解法可以利用按"周"统计的数据进行预测,缩短了预测周期,并具有较高的短期预测精度。 展开更多
关键词 细菌性痢疾 时间序列 求和自回归移动平均模型 预测
下载PDF
基于ARIMA与LSTM的新冠肺炎网络关注度趋势研究 被引量:13
20
作者 景楠 胡怡 韩喜双 《中国安全科学学报》 CAS CSCD 北大核心 2020年第12期37-42,共6页
为有效监控和管理新型冠状病毒肺炎(COVID-19)引起的网络舆情,基于自回归移动平均(ARIMA)模型和长短期记忆(LSTM)神经网络预测和分析舆情数据,利用百度指数收集全国及武汉市网民对COVID-19的关注度数值,形成时间序列数据,并构建舆情模型... 为有效监控和管理新型冠状病毒肺炎(COVID-19)引起的网络舆情,基于自回归移动平均(ARIMA)模型和长短期记忆(LSTM)神经网络预测和分析舆情数据,利用百度指数收集全国及武汉市网民对COVID-19的关注度数值,形成时间序列数据,并构建舆情模型;对舆情模型进行参数估计、模型诊断和模型评价。结果表明:此疫情的网络舆情前驱期为4天,爆发期为7天,波动期为14天,消退期为32天,到达峰值的时间为13天;该模型可较好地模拟COVID-19网络舆情关注度的变化趋势,且局部地区的数据拟合模型预测效果优于全国数据拟合模型。 展开更多
关键词 自回归移动平均(arima)模型 长短期记忆(LSTM) 新型冠状病毒肺炎(COVID-19) 网络舆情 时间序列
下载PDF
上一页 1 2 下一页 到第
使用帮助 返回顶部