A kind of improved contact frictional model on basis of traditional Coulomb Friction model is adopted. Corresponding contact element is also given. The contact algorithm on basis of augmented Lagrange method is introd...A kind of improved contact frictional model on basis of traditional Coulomb Friction model is adopted. Corresponding contact element is also given. The contact algorithm on basis of augmented Lagrange method is introduced and successfully applied to complex contact friction problem. Test example and actual engineering case all show that the algorithm of the model is efficient and computation results agree well with general rules.展开更多
Contact nonlinear theory was researched. Contact problem was transformed into optimization problem containing Lagrange multiplier, and unsymmetrical stiffness matrix was transformed into symmetrical stiffness matrix. ...Contact nonlinear theory was researched. Contact problem was transformed into optimization problem containing Lagrange multiplier, and unsymmetrical stiffness matrix was transformed into symmetrical stiffness matrix. A finite element analysis (FEA) model defining more than 300 contact pairs for long nut-short screw locking mechanism of a large-scale vertical gear-rack typed ship-lift was built. Using augmented Lagrange method and symmetry algorithm of contact element stiffness, the FEA model was analyzed, and the contact stress of contact interfaces and the von Mises stress of key parts were obtained. The results show that the design of the locking mechanism meets the requirement of engineering, and this method is effective for solving large stole nonlinear contact pairs.展开更多
We propose a new trust region algorithm for nonlinear constrained optimization problems. In each iteration of our algorithm, the trial step is computed by minimizing a quadratic approximation to the augmented Lagrange...We propose a new trust region algorithm for nonlinear constrained optimization problems. In each iteration of our algorithm, the trial step is computed by minimizing a quadratic approximation to the augmented Lagrange function in the trust region. The augmented Lagrange function is also used as a merit function to decide whether the trial step should be accepted. Our method extends the traditional trust region approach by combining a filter technique into the rules for accepting trial steps so that a trial step could still be accepted even when it is rejected by the traditional rule based on merit function reduction. An estimate of the Lagrange multiplier is updated at each iteration, and the penalty parameter is updated to force sufficient reduction in the norm of the constraint violations. Active set technique is used to handle the inequality constraints. Numerical results for a set of constrained problems from the CUTEr collection are also reported.展开更多
Principal component analysis and generalized low rank approximation of matrices are two different dimensionality reduction methods. Two different dimensionality reduction algorithms are applied to the L1-CSVM model ba...Principal component analysis and generalized low rank approximation of matrices are two different dimensionality reduction methods. Two different dimensionality reduction algorithms are applied to the L1-CSVM model based on augmented Lagrange method to explore the variation of running time and accuracy of the model in dimensionality reduction space. The results show that the improved algorithm can greatly reduce the running time and improve the accuracy of the algorithm.展开更多
文摘A kind of improved contact frictional model on basis of traditional Coulomb Friction model is adopted. Corresponding contact element is also given. The contact algorithm on basis of augmented Lagrange method is introduced and successfully applied to complex contact friction problem. Test example and actual engineering case all show that the algorithm of the model is efficient and computation results agree well with general rules.
基金Supported by the Key Research Project of StatePower Corporation (SPKJ 0l6-06)the Key Scientific ResearchProject of Hubei Province ( 2004AC101D31)
文摘Contact nonlinear theory was researched. Contact problem was transformed into optimization problem containing Lagrange multiplier, and unsymmetrical stiffness matrix was transformed into symmetrical stiffness matrix. A finite element analysis (FEA) model defining more than 300 contact pairs for long nut-short screw locking mechanism of a large-scale vertical gear-rack typed ship-lift was built. Using augmented Lagrange method and symmetry algorithm of contact element stiffness, the FEA model was analyzed, and the contact stress of contact interfaces and the von Mises stress of key parts were obtained. The results show that the design of the locking mechanism meets the requirement of engineering, and this method is effective for solving large stole nonlinear contact pairs.
基金supported by NSFC Grant 10831006CAS grant kjcx-yw-s7
文摘We propose a new trust region algorithm for nonlinear constrained optimization problems. In each iteration of our algorithm, the trial step is computed by minimizing a quadratic approximation to the augmented Lagrange function in the trust region. The augmented Lagrange function is also used as a merit function to decide whether the trial step should be accepted. Our method extends the traditional trust region approach by combining a filter technique into the rules for accepting trial steps so that a trial step could still be accepted even when it is rejected by the traditional rule based on merit function reduction. An estimate of the Lagrange multiplier is updated at each iteration, and the penalty parameter is updated to force sufficient reduction in the norm of the constraint violations. Active set technique is used to handle the inequality constraints. Numerical results for a set of constrained problems from the CUTEr collection are also reported.
文摘Principal component analysis and generalized low rank approximation of matrices are two different dimensionality reduction methods. Two different dimensionality reduction algorithms are applied to the L1-CSVM model based on augmented Lagrange method to explore the variation of running time and accuracy of the model in dimensionality reduction space. The results show that the improved algorithm can greatly reduce the running time and improve the accuracy of the algorithm.