Relation contexts have been proved to be useful for many challenging vision tasks.In the field of3D object detection,previous methods have been taking the advantage of context encoding,graph embedding,or explicit rela...Relation contexts have been proved to be useful for many challenging vision tasks.In the field of3D object detection,previous methods have been taking the advantage of context encoding,graph embedding,or explicit relation reasoning to extract relation contexts.However,there exist inevitably redundant relation contexts due to noisy or low-quality proposals.In fact,invalid relation contexts usually indicate underlying scene misunderstanding and ambiguity,which may,on the contrary,reduce the performance in complex scenes.Inspired by recent attention mechanism like Transformer,we propose a novel 3D attention-based relation module(ARM3D).It encompasses objectaware relation reasoning to extract pair-wise relation contexts among qualified proposals and an attention module to distribute attention weights towards different relation contexts.In this way,ARM3D can take full advantage of the useful relation contexts and filter those less relevant or even confusing contexts,which mitigates the ambiguity in detection.We have evaluated the effectiveness of ARM3D by plugging it into several state-of-the-art 3D object detectors and showing more accurate and robust detection results.Extensive experiments show the capability and generalization of ARM3D on 3D object detection.Our source code is available at https://github.com/lanlan96/ARM3D.展开更多
The growing prevalence of knowledge reasoning using knowledge graphs(KGs)has substantially improved the accuracy and efficiency of intelligent medical diagnosis.However,current models primarily integrate electronic me...The growing prevalence of knowledge reasoning using knowledge graphs(KGs)has substantially improved the accuracy and efficiency of intelligent medical diagnosis.However,current models primarily integrate electronic medical records(EMRs)and KGs into the knowledge reasoning process,ignoring the differing significance of various types of knowledge in EMRs and the diverse data types present in the text.To better integrate EMR text information,we propose a novel intelligent diagnostic model named the Graph ATtention network incorporating Text representation in knowledge reasoning(GATiT),which comprises text representation,subgraph construction,knowledge reasoning,and diagnostic classification.In the text representation process,GATiT uses a pre-trained model to obtain text representations of the EMRs and additionally enhances embeddings by including chief complaint information and numerical information in the input.In the subgraph construction process,GATiT constructs text subgraphs and disease subgraphs from the KG,utilizing EMR text and the disease to be diagnosed.To differentiate the varying importance of nodes within the subgraphs features such as node categories,relevance scores,and other relevant factors are introduced into the text subgraph.Themessage-passing strategy and attention weight calculation of the graph attention network are adjusted to learn these features in the knowledge reasoning process.Finally,in the diagnostic classification process,the interactive attention-based fusion method integrates the results of knowledge reasoning with text representations to produce the final diagnosis results.Experimental results on multi-label and single-label EMR datasets demonstrate the model’s superiority over several state-of-theart methods.展开更多
A novel method case-based reasoning was proposed for suspicious behavior recognition. The method is composed of three departs: human behavior decomposition, human behavior case representation and case-based reasoning....A novel method case-based reasoning was proposed for suspicious behavior recognition. The method is composed of three departs: human behavior decomposition, human behavior case representation and case-based reasoning. The new approach was proposed to decompose behavior into sub-behaviors that are easier to recognize using a saliency-based visual attention model. New representation of behavior was introduced, in which the sub-behavior and the associated time characteristic of sub-behavior were used to represent behavior case. In the process of case-based reasoning, apart from considering the similarity of basic sub-behaviors,order factor was proposed to measure the similarity of a time order among the sub-behaviors and span factor was used to measure the similarity of duration time of each sub-behavior, which makes the similarity calculations more rational and comprehensive.Experimental results show the effectiveness of the proposed method in comparison with other related works and can run in real-time for the recognition of suspicious behaviors.展开更多
基金National Nature Science Foundation of China(62132021,62102435,62002375,62002376)National Key R&D Program of China(2018AAA0102200)NUDT Research Grants(ZK19-30)。
文摘Relation contexts have been proved to be useful for many challenging vision tasks.In the field of3D object detection,previous methods have been taking the advantage of context encoding,graph embedding,or explicit relation reasoning to extract relation contexts.However,there exist inevitably redundant relation contexts due to noisy or low-quality proposals.In fact,invalid relation contexts usually indicate underlying scene misunderstanding and ambiguity,which may,on the contrary,reduce the performance in complex scenes.Inspired by recent attention mechanism like Transformer,we propose a novel 3D attention-based relation module(ARM3D).It encompasses objectaware relation reasoning to extract pair-wise relation contexts among qualified proposals and an attention module to distribute attention weights towards different relation contexts.In this way,ARM3D can take full advantage of the useful relation contexts and filter those less relevant or even confusing contexts,which mitigates the ambiguity in detection.We have evaluated the effectiveness of ARM3D by plugging it into several state-of-the-art 3D object detectors and showing more accurate and robust detection results.Extensive experiments show the capability and generalization of ARM3D on 3D object detection.Our source code is available at https://github.com/lanlan96/ARM3D.
基金supported in part by the Science and Technology Innovation 2030-“New Generation of Artificial Intelligence”Major Project(No.2021ZD0111000)Henan Provincial Science and Technology Research Project(No.232102211039).
文摘The growing prevalence of knowledge reasoning using knowledge graphs(KGs)has substantially improved the accuracy and efficiency of intelligent medical diagnosis.However,current models primarily integrate electronic medical records(EMRs)and KGs into the knowledge reasoning process,ignoring the differing significance of various types of knowledge in EMRs and the diverse data types present in the text.To better integrate EMR text information,we propose a novel intelligent diagnostic model named the Graph ATtention network incorporating Text representation in knowledge reasoning(GATiT),which comprises text representation,subgraph construction,knowledge reasoning,and diagnostic classification.In the text representation process,GATiT uses a pre-trained model to obtain text representations of the EMRs and additionally enhances embeddings by including chief complaint information and numerical information in the input.In the subgraph construction process,GATiT constructs text subgraphs and disease subgraphs from the KG,utilizing EMR text and the disease to be diagnosed.To differentiate the varying importance of nodes within the subgraphs features such as node categories,relevance scores,and other relevant factors are introduced into the text subgraph.Themessage-passing strategy and attention weight calculation of the graph attention network are adjusted to learn these features in the knowledge reasoning process.Finally,in the diagnostic classification process,the interactive attention-based fusion method integrates the results of knowledge reasoning with text representations to produce the final diagnosis results.Experimental results on multi-label and single-label EMR datasets demonstrate the model’s superiority over several state-of-theart methods.
基金Project(50808025)supported by the National Natural Science Foundation of ChinaProject(2013GK3012)supported by the Science and Technology Project of Hunan Province,China
文摘A novel method case-based reasoning was proposed for suspicious behavior recognition. The method is composed of three departs: human behavior decomposition, human behavior case representation and case-based reasoning. The new approach was proposed to decompose behavior into sub-behaviors that are easier to recognize using a saliency-based visual attention model. New representation of behavior was introduced, in which the sub-behavior and the associated time characteristic of sub-behavior were used to represent behavior case. In the process of case-based reasoning, apart from considering the similarity of basic sub-behaviors,order factor was proposed to measure the similarity of a time order among the sub-behaviors and span factor was used to measure the similarity of duration time of each sub-behavior, which makes the similarity calculations more rational and comprehensive.Experimental results show the effectiveness of the proposed method in comparison with other related works and can run in real-time for the recognition of suspicious behaviors.