In this paper, we introduced a novel storage architecture 'Unified Storage Network', which merges NAC( Network Attached Channel) and SAN( Storage Area Network) , and provides the file I/O services as NAS devic...In this paper, we introduced a novel storage architecture 'Unified Storage Network', which merges NAC( Network Attached Channel) and SAN( Storage Area Network) , and provides the file I/O services as NAS devices and provides the block I/O services as SAN. To overcome the drawbacks from FC, we employ iSCSI to implement the USN( Unified Storage Network) . To evaluate whether iSCSI is more suitable for implementing the USN, we analyze iSCSI protocol and compare it with FC protocol from several components of a network protocol which impact the performance of the network. From the analysis and comparison, we can conclude that the iSCSI is more suitable for implementing the storage network than the FC under condition of the wide-area network. At last, we designed two groups of experiments carefully.展开更多
This paper reviewed two types of network storage technique: NAS and SAN. After comparing and analyzing, it concluded that the ultimate realization of network storage will be in the eventual convergence of NAS and SAN ...This paper reviewed two types of network storage technique: NAS and SAN. After comparing and analyzing, it concluded that the ultimate realization of network storage will be in the eventual convergence of NAS and SAN architectures. Currently, all the integration methods are based on the architecture level. This paper presented a device level integration scheme based on IXP1200 network processor. The device can be used as an NAS file server or an SAN’s storage node. Furthermore, it can be used as a bridge to connect NAS and SAN, and then be shared by their clients.展开更多
Network storage increase capacity and scalability of storage system, data availability and enables the sharing of data among clients. When the developing network technology reduce performance gap between disk and netw...Network storage increase capacity and scalability of storage system, data availability and enables the sharing of data among clients. When the developing network technology reduce performance gap between disk and network, however, mismatched policies and access pattern can significantly reduce network storage performance. So the strategy of data placement in system is an important factor that impacts the performance of overall system. In this paper, the two algorithms of file assignment are presented. One is Greed partition that aims at the load balance across all NADs (Network Attached Disk). The other is Sort partition that tries to minimize variance of service time in each NAD. Moreover, we also compare the performance of our two algorithms in practical environment. Our experimental results show that when the size distribution (load characters) of all assigning files is closer and larger, Sort partition provides consistently better response times than Greedy algorithm. However, when the range of all assigning files is wider, there are more small files and access rate is higher, the Greedy algorithm has superior performance in compared with the Sort partition in off-line.展开更多
A multi-user view file system (MUVFS) and a security scheme are developed to improve the security of the united storage network (USN) that integrates a network attached storage (NAS) and a storage area network (SAN). ...A multi-user view file system (MUVFS) and a security scheme are developed to improve the security of the united storage network (USN) that integrates a network attached storage (NAS) and a storage area network (SAN). The MUVFS offers a storage volume view for each authorized user who can access only the data in his own storage volume, the security scheme enables all users to encrypt and decrypt the data of their own storage view at client-side, and the USN server needs only to check the users’ identities and the data’s integrity. Experiments were performed to compare the sequential read, write and read/write rates of NFS+MUVFS+secure_module with those of NFS. The results indicate that the security of the USN is improved greatly with little influence on the system performance when the MUVFS and the security scheme are integrated into it.展开更多
With the digital information and application requirement on the Internet increasing fleetly nowadays,it is urgent to work out a network storage system with a large capacity,a high availability and scalability.To solve...With the digital information and application requirement on the Internet increasing fleetly nowadays,it is urgent to work out a network storage system with a large capacity,a high availability and scalability.To solve the above-mentioned issues,a NAS-based storage network(for short NASSN)has been designed.Firstly,the NASSN integrates multi-NAS,iNAS(an iSCSI-based NAS)and enterprise SAN with the help of storage virtualization,which can provide a greater capacity and better scalability.Secondly,the NASSN can provide high availability with the help of server and storage subsystem redundancy technologies.Thirdly,the NASSN simultaneously serves for both the file I/O and the block I/O with the help of an iSCSI module,which has the advantages of NAS and SAN.Finally,the NASSN can provide higher I/O speed by a high network-attached channel which implements the direct data transfer between the storage device and client.In the experiments,the NASSN has ultra-high-throughput for both of the file I/O requests and the block I/O requests.展开更多
文摘In this paper, we introduced a novel storage architecture 'Unified Storage Network', which merges NAC( Network Attached Channel) and SAN( Storage Area Network) , and provides the file I/O services as NAS devices and provides the block I/O services as SAN. To overcome the drawbacks from FC, we employ iSCSI to implement the USN( Unified Storage Network) . To evaluate whether iSCSI is more suitable for implementing the USN, we analyze iSCSI protocol and compare it with FC protocol from several components of a network protocol which impact the performance of the network. From the analysis and comparison, we can conclude that the iSCSI is more suitable for implementing the storage network than the FC under condition of the wide-area network. At last, we designed two groups of experiments carefully.
文摘This paper reviewed two types of network storage technique: NAS and SAN. After comparing and analyzing, it concluded that the ultimate realization of network storage will be in the eventual convergence of NAS and SAN architectures. Currently, all the integration methods are based on the architecture level. This paper presented a device level integration scheme based on IXP1200 network processor. The device can be used as an NAS file server or an SAN’s storage node. Furthermore, it can be used as a bridge to connect NAS and SAN, and then be shared by their clients.
文摘Network storage increase capacity and scalability of storage system, data availability and enables the sharing of data among clients. When the developing network technology reduce performance gap between disk and network, however, mismatched policies and access pattern can significantly reduce network storage performance. So the strategy of data placement in system is an important factor that impacts the performance of overall system. In this paper, the two algorithms of file assignment are presented. One is Greed partition that aims at the load balance across all NADs (Network Attached Disk). The other is Sort partition that tries to minimize variance of service time in each NAD. Moreover, we also compare the performance of our two algorithms in practical environment. Our experimental results show that when the size distribution (load characters) of all assigning files is closer and larger, Sort partition provides consistently better response times than Greedy algorithm. However, when the range of all assigning files is wider, there are more small files and access rate is higher, the Greedy algorithm has superior performance in compared with the Sort partition in off-line.
文摘A multi-user view file system (MUVFS) and a security scheme are developed to improve the security of the united storage network (USN) that integrates a network attached storage (NAS) and a storage area network (SAN). The MUVFS offers a storage volume view for each authorized user who can access only the data in his own storage volume, the security scheme enables all users to encrypt and decrypt the data of their own storage view at client-side, and the USN server needs only to check the users’ identities and the data’s integrity. Experiments were performed to compare the sequential read, write and read/write rates of NFS+MUVFS+secure_module with those of NFS. The results indicate that the security of the USN is improved greatly with little influence on the system performance when the MUVFS and the security scheme are integrated into it.
基金Sponsored by the National Natural Science Foundation of China(Grant No.60673191and90304011)Science Innovation Term Foundation of Guang-dong University of Foreign Studies(Grant No.GW2006-AT-005)Science Innovation Term Foundation of School of Informatics Guangdong University of Foreign Studies.
文摘With the digital information and application requirement on the Internet increasing fleetly nowadays,it is urgent to work out a network storage system with a large capacity,a high availability and scalability.To solve the above-mentioned issues,a NAS-based storage network(for short NASSN)has been designed.Firstly,the NASSN integrates multi-NAS,iNAS(an iSCSI-based NAS)and enterprise SAN with the help of storage virtualization,which can provide a greater capacity and better scalability.Secondly,the NASSN can provide high availability with the help of server and storage subsystem redundancy technologies.Thirdly,the NASSN simultaneously serves for both the file I/O and the block I/O with the help of an iSCSI module,which has the advantages of NAS and SAN.Finally,the NASSN can provide higher I/O speed by a high network-attached channel which implements the direct data transfer between the storage device and client.In the experiments,the NASSN has ultra-high-throughput for both of the file I/O requests and the block I/O requests.