Alkali-metal atomic magnetometers employing longitudinal carrier magnetic field have ultrahigh sensitivity to measure transverse magnetic fields and have been applied in a variety of precise-measurement science and te...Alkali-metal atomic magnetometers employing longitudinal carrier magnetic field have ultrahigh sensitivity to measure transverse magnetic fields and have been applied in a variety of precise-measurement science and technologies.In practice,the magnetometer response is not rigorously proportional to the measured transverse magnetic fields and the existing fundamental analytical model of this magnetometer is effective only when the amplitudes of the measured fields are very small.In this paper,we present a modified analytical model to characterize the practical performance of the magnetometer more definitely.We find out how the longitudinal magnetization of the alkali metal atoms vary with larger transverse fields.The linear-response capacity of the magnetometer is determined by these factors:the amplitude and frequency of the longitudinal carrier field,longitudinal and transverse spin relaxation time of the alkali spins and rotation frequency of the transverse fields.We give a detailed and rigorous theoretical derivation by using the perturbation-iteration method and simulation experiments are conducted to verify the validity and correctness of the proposed modified model.This model can be helpful for measuring larger fields more accurately and configuring a desirable magnetometer with proper linear range.展开更多
Electrification has great impacts on our modern society.To electrify future transportation,state-of-the-art lithium-ion batteries(LIBs)are still not sufficient in multiple aspects including cost,energy density,lifespa...Electrification has great impacts on our modern society.To electrify future transportation,state-of-the-art lithium-ion batteries(LIBs)are still not sufficient in multiple aspects including cost,energy density,lifespan,and safety.To this end,next-generation high-energy LIBs and beyond are highly regarded.In this regard,high-capacity anodes are undergoing intensive investigation,such as silicon,SnO_(2),and lithium metal.However,such anode materials are commonly experiencing large volume changes and related issues,which are reflected on mechanical degradation,capacity fading,low efficiency,and unsatisfactory lifetime.To address these challenges,many technical strategies have been investigated.In the past decade,atomic layer deposition(ALD)has emerged as a new promising technique enabling atomic-scale surface modification and nanoscale design of high-capacity anodes for high performance.In this review,recent ALD studies on developing high-capacity anodes for LIBs and beyond are thoroughly summarized.In addition,ALD strategies and their effectiveness in pursing high-energy LIBs and beyond are discussed.Particularly,we highlighted the latest advances of ALD for addressing the notorious issues associated with Li metal anodes.It is expected that this work will promote the applications of ALD in new battery systems.展开更多
Ginger (<i><span>Zingiber officinale</span></i><span>) is an important spice and medicinal plant used in different parts of the world. The objective of current study was to determine the ...Ginger (<i><span>Zingiber officinale</span></i><span>) is an important spice and medicinal plant used in different parts of the world. The objective of current study was to determine the level of essential and non-essential metals in ginger and its correlation with concentration of metals in the supporting soil. The level of K, Na, Ca, Mg, Mn, Fe, Zn, Cu, Co, Cd and Pb in soil and ginger cultivated in the selected districts of Wolaita zone, Southern Ethiopia were determined using flame atomic absorption spectrometry. A 0.5 g ginger sample was digested using a mixture of 4 ml HNO</span><sub><span style="vertical-align:sub;">3</span></sub><span> and 1.5 ml HClO</span><sub><span style="vertical-align:sub;">4</span></sub><span> at 210°</span><span>C</span><span> for 150 min</span><span>utes, and a 0.5 g soil sample was digested employing a mixture of 6 ml aqua-regia and 1 ml H</span><sub><span style="vertical-align:sub;">2</span></sub><span>O</span><sub><span style="vertical-align:sub;">2</span></sub><span> at 280°</span><span>C</span><span> for 150 minutes. The metal</span><span> concentrations range in dry weight basis for ginger samples is decreasing in the order: K (1691 </span><span>-</span><span> 3487 mg/kg) > Mg (701 </span><span>-</span><span> 1583 mg/kg) > Ca (862 </span><span>-</span><span> 1476 mg/kg) > Na (398 </span><span>-</span><span> 776 mg/kg) > Mn (325 </span><span>-</span><span> 672 mg/kg) > Fe (6.14 </span><span>-</span><span> 11.92 mg/kg) > Zn (5.30 </span><span>-</span><span> 10.09 mg/kg) > (0.12 </span><span>-</span><span> 0.23 mg/kg) for Pb. The concentration of Cd, Cu and Co in ginger samples were below the limit of detection. The results revealed that ginger has the ability to accumulate relatively higher amounts of K and Mg among the determined essential metals. The soil samples have been found to be acidic pH, sandy clay loam in texture, a very low electrical conductivity and moderate level of (CEC, organic carbon, available phosphorus and total nitrogen). Although, a positive correlatio展开更多
A series of CexZr0.50-xAl0.50O1.75(0.05≤x≤0.45) mixed oxides with different Ce/Zr ratio were prepared by co-precipitation method and characterized by means of X-ray diffraction(XRD),Brunauer-Emmet Teller method(BET)...A series of CexZr0.50-xAl0.50O1.75(0.05≤x≤0.45) mixed oxides with different Ce/Zr ratio were prepared by co-precipitation method and characterized by means of X-ray diffraction(XRD),Brunauer-Emmet Teller method(BET),temperature-programmed reduction(H2-TPR) and oxygen pulsing technique.The XRD results showed that all samples kept the single CeO2 cubic fluorite structure after calcination at 600 and 1000 oC for 5 h.The results of BET revealed that CexZr0.50-xAl0.50O1.75 with Ce/Zr molar ratio 1/1 exhibited hi...展开更多
基金the Hunan Graduate Research and Innovation Project(Grant No.CX2018B009)the Natural Science Foundation of Hunan(Grant No.2018JJ3608)+1 种基金the Research Project of National University of Defense Technology(Grant Nos.ZK170204 and ZZKY-YX-07-02)the National Natural Science Foundation of China(Grant Nos.61671458 and 61701515).
文摘Alkali-metal atomic magnetometers employing longitudinal carrier magnetic field have ultrahigh sensitivity to measure transverse magnetic fields and have been applied in a variety of precise-measurement science and technologies.In practice,the magnetometer response is not rigorously proportional to the measured transverse magnetic fields and the existing fundamental analytical model of this magnetometer is effective only when the amplitudes of the measured fields are very small.In this paper,we present a modified analytical model to characterize the practical performance of the magnetometer more definitely.We find out how the longitudinal magnetization of the alkali metal atoms vary with larger transverse fields.The linear-response capacity of the magnetometer is determined by these factors:the amplitude and frequency of the longitudinal carrier field,longitudinal and transverse spin relaxation time of the alkali spins and rotation frequency of the transverse fields.We give a detailed and rigorous theoretical derivation by using the perturbation-iteration method and simulation experiments are conducted to verify the validity and correctness of the proposed modified model.This model can be helpful for measuring larger fields more accurately and configuring a desirable magnetometer with proper linear range.
基金supported in part by the Natural Science Foundation of China(51802150,51571111,and 51721001)Jiangsu Province(BK20170645,BK20201087)
文摘Electrification has great impacts on our modern society.To electrify future transportation,state-of-the-art lithium-ion batteries(LIBs)are still not sufficient in multiple aspects including cost,energy density,lifespan,and safety.To this end,next-generation high-energy LIBs and beyond are highly regarded.In this regard,high-capacity anodes are undergoing intensive investigation,such as silicon,SnO_(2),and lithium metal.However,such anode materials are commonly experiencing large volume changes and related issues,which are reflected on mechanical degradation,capacity fading,low efficiency,and unsatisfactory lifetime.To address these challenges,many technical strategies have been investigated.In the past decade,atomic layer deposition(ALD)has emerged as a new promising technique enabling atomic-scale surface modification and nanoscale design of high-capacity anodes for high performance.In this review,recent ALD studies on developing high-capacity anodes for LIBs and beyond are thoroughly summarized.In addition,ALD strategies and their effectiveness in pursing high-energy LIBs and beyond are discussed.Particularly,we highlighted the latest advances of ALD for addressing the notorious issues associated with Li metal anodes.It is expected that this work will promote the applications of ALD in new battery systems.
文摘Ginger (<i><span>Zingiber officinale</span></i><span>) is an important spice and medicinal plant used in different parts of the world. The objective of current study was to determine the level of essential and non-essential metals in ginger and its correlation with concentration of metals in the supporting soil. The level of K, Na, Ca, Mg, Mn, Fe, Zn, Cu, Co, Cd and Pb in soil and ginger cultivated in the selected districts of Wolaita zone, Southern Ethiopia were determined using flame atomic absorption spectrometry. A 0.5 g ginger sample was digested using a mixture of 4 ml HNO</span><sub><span style="vertical-align:sub;">3</span></sub><span> and 1.5 ml HClO</span><sub><span style="vertical-align:sub;">4</span></sub><span> at 210°</span><span>C</span><span> for 150 min</span><span>utes, and a 0.5 g soil sample was digested employing a mixture of 6 ml aqua-regia and 1 ml H</span><sub><span style="vertical-align:sub;">2</span></sub><span>O</span><sub><span style="vertical-align:sub;">2</span></sub><span> at 280°</span><span>C</span><span> for 150 minutes. The metal</span><span> concentrations range in dry weight basis for ginger samples is decreasing in the order: K (1691 </span><span>-</span><span> 3487 mg/kg) > Mg (701 </span><span>-</span><span> 1583 mg/kg) > Ca (862 </span><span>-</span><span> 1476 mg/kg) > Na (398 </span><span>-</span><span> 776 mg/kg) > Mn (325 </span><span>-</span><span> 672 mg/kg) > Fe (6.14 </span><span>-</span><span> 11.92 mg/kg) > Zn (5.30 </span><span>-</span><span> 10.09 mg/kg) > (0.12 </span><span>-</span><span> 0.23 mg/kg) for Pb. The concentration of Cd, Cu and Co in ginger samples were below the limit of detection. The results revealed that ginger has the ability to accumulate relatively higher amounts of K and Mg among the determined essential metals. The soil samples have been found to be acidic pH, sandy clay loam in texture, a very low electrical conductivity and moderate level of (CEC, organic carbon, available phosphorus and total nitrogen). Although, a positive correlatio
基金supported by the National Natural Science Foundation of China (20773090, 20803049)the National High Technology Research and Development Program of China (863 Program,2006AA06Z347)the Specialized Research Fund for the Doctoral Program of Higher Education (20070610026)
文摘A series of CexZr0.50-xAl0.50O1.75(0.05≤x≤0.45) mixed oxides with different Ce/Zr ratio were prepared by co-precipitation method and characterized by means of X-ray diffraction(XRD),Brunauer-Emmet Teller method(BET),temperature-programmed reduction(H2-TPR) and oxygen pulsing technique.The XRD results showed that all samples kept the single CeO2 cubic fluorite structure after calcination at 600 and 1000 oC for 5 h.The results of BET revealed that CexZr0.50-xAl0.50O1.75 with Ce/Zr molar ratio 1/1 exhibited hi...