A scheme for probabilistic teleportation of an unknown three-atom entangled state via a five-atom non- maximally entangled cluster state as quantum channel is proposed. In this scheme, the sender performs two Bell sta...A scheme for probabilistic teleportation of an unknown three-atom entangled state via a five-atom non- maximally entangled cluster state as quantum channel is proposed. In this scheme, the sender performs two Bell state and a single-atom measurements on the atoms, the receiver can reconstruct the original state with a certain probability by introducing an auxiliary atom and operating appropriate unitary transformations and controlled-not (C-not) operations according to the sender Alice's measurement results. As a result, the probability of successful teleportation is determined by the smallest two of the coefficients' absolute values of the cluster state. The considerable advantage of our scheme is that we employ a non-maximally entangled cluster state as quantum channel in the scheme, which can greatly reduce the amount of entanglement resources and need less classical bits. If we employ a maximally entangled cluster state as quantum channel, the probabilistic teleportation scheme becomes usual teleportation, the successful probability being 100%.展开更多
基金Supported by the National Natural Science Foundation of China under Grant Nos. 11147134, 11273008, and 51271059 and the Natural Science Foundation of Anhui Province University under Grant Nos. 2013A205 and 2012Z309
文摘A scheme for probabilistic teleportation of an unknown three-atom entangled state via a five-atom non- maximally entangled cluster state as quantum channel is proposed. In this scheme, the sender performs two Bell state and a single-atom measurements on the atoms, the receiver can reconstruct the original state with a certain probability by introducing an auxiliary atom and operating appropriate unitary transformations and controlled-not (C-not) operations according to the sender Alice's measurement results. As a result, the probability of successful teleportation is determined by the smallest two of the coefficients' absolute values of the cluster state. The considerable advantage of our scheme is that we employ a non-maximally entangled cluster state as quantum channel in the scheme, which can greatly reduce the amount of entanglement resources and need less classical bits. If we employ a maximally entangled cluster state as quantum channel, the probabilistic teleportation scheme becomes usual teleportation, the successful probability being 100%.