To study the effect of atmospheric pressure on the properties of fresh and hardened airentrained concrete, three kinds of air entraining agents were used for preparing air-entrained concrete in the plateaus(Lhasa, 61 ...To study the effect of atmospheric pressure on the properties of fresh and hardened airentrained concrete, three kinds of air entraining agents were used for preparing air-entrained concrete in the plateaus(Lhasa, 61 kPa) and the plains(Beijing, 101 kPa). Air content, slump, compressive strength and pore structure of the three air-entrained concretes were tested in these two places. It is found that the air content of concrete under low atmospheric pressure(LAP) is 4%-36% lower than that of concrete under normal atmospheric pressure(NAP), which explaines the decrease of slump for air-entrained concrete under LAP. Pore number of hardened concrete under LAP is reduced by 48%-69%. While, the proportion of big pores(pore diameter >1 200 μm) and air void spacing factor are increased by 1.5%-7.3% and 51%-92%, respectively. The deterioration of pore structure results in a 3%-9% reduction in the compressive strength of concrete. From the results we have obtained, it can be concluded that the increase of critical nucleation energy of air bubbles and the decrease of volumetric compressibility coefficient of air in the concrete are responsible for the variation of air content and pore structure of concrete under LAP.展开更多
Dielectric barrier discharge (DBD) between two cylindrical glass containers with salt water generated by a nanosecond repetitively pulsed power generator is reported. The electrical parameters, luminous images and s...Dielectric barrier discharge (DBD) between two cylindrical glass containers with salt water generated by a nanosecond repetitively pulsed power generator is reported. The electrical parameters, luminous images and spectrum diagnosis are presented. It is shown that the DBD possesses a large discharge current and an intense optical emission from the nitrogen second positive system below 400 nm. The gas temperature remains very close to room temperature regardless of pulse polarity. Luminous photographs with a short exposure time down to 2 ns indicate that no filament is observed and the discharge is homogeneous.展开更多
A pulse generator with a voltage rise time of~1.5 ns and voltage amplitude variable from 30 kV to 200 kV was designed for generating runaway electron beams in atmospheric pressure air with different interelectrode ga...A pulse generator with a voltage rise time of~1.5 ns and voltage amplitude variable from 30 kV to 200 kV was designed for generating runaway electron beams in atmospheric pressure air with different interelectrode gaps.The influence of the voltage amplitude and gap length on the generation was studied.In the gas diode geometry under study,the gap voltage at which the generation of a runaway electron beam begins was determined.Decreasing the voltage pulse amplitude does not increase the beam current pulse width measured with a time resolution of~0.1 ns.It is shown that the escape of beam electrons to the downstream of the foil is sync in time with the voltage drop across the gap,and that the delay of beam current generation increases gradually from 1.1 ns to 2.6 ns as the voltage pulse amplitude across the gap decreases from~100 kV to 40 kV.展开更多
基金Funed by the National Key R&D Program of China(No.2017YFB0309903)
文摘To study the effect of atmospheric pressure on the properties of fresh and hardened airentrained concrete, three kinds of air entraining agents were used for preparing air-entrained concrete in the plateaus(Lhasa, 61 kPa) and the plains(Beijing, 101 kPa). Air content, slump, compressive strength and pore structure of the three air-entrained concretes were tested in these two places. It is found that the air content of concrete under low atmospheric pressure(LAP) is 4%-36% lower than that of concrete under normal atmospheric pressure(NAP), which explaines the decrease of slump for air-entrained concrete under LAP. Pore number of hardened concrete under LAP is reduced by 48%-69%. While, the proportion of big pores(pore diameter >1 200 μm) and air void spacing factor are increased by 1.5%-7.3% and 51%-92%, respectively. The deterioration of pore structure results in a 3%-9% reduction in the compressive strength of concrete. From the results we have obtained, it can be concluded that the increase of critical nucleation energy of air bubbles and the decrease of volumetric compressibility coefficient of air in the concrete are responsible for the variation of air content and pore structure of concrete under LAP.
基金supported by National Natural Science Foundation of China (Nos. 50707032, 11076026)the Knowledge Innovation Program of the Chinese Academy of Sciences (No. KGCX2-YW-339)+1 种基金the National Basic Research Program of China (No. 2011CB209405)the State Key Laboratory of Control and Simulation of Power Systems and Generating Equipment in Tsinghua University (No. SKLD09KZ05)
文摘Dielectric barrier discharge (DBD) between two cylindrical glass containers with salt water generated by a nanosecond repetitively pulsed power generator is reported. The electrical parameters, luminous images and spectrum diagnosis are presented. It is shown that the DBD possesses a large discharge current and an intense optical emission from the nitrogen second positive system below 400 nm. The gas temperature remains very close to room temperature regardless of pulse polarity. Luminous photographs with a short exposure time down to 2 ns indicate that no filament is observed and the discharge is homogeneous.
基金Project supported by Russian Foundation for Basic Research (12-08-91150-GFEN_a), National Natural Science Foundation of China (51222701, 51207154, 51211120183), National Basic Research Program of China (973 Program) (20llCB209402), Opening Project of State Key Laboratory of Electrical Insulation and Power Equipment in Xi'an Jiaotong University (EIPEI2204), Chinese Academy of Sciences Visiting Professorship for Senior International Scientists (2012TtG0021).
文摘A pulse generator with a voltage rise time of~1.5 ns and voltage amplitude variable from 30 kV to 200 kV was designed for generating runaway electron beams in atmospheric pressure air with different interelectrode gaps.The influence of the voltage amplitude and gap length on the generation was studied.In the gas diode geometry under study,the gap voltage at which the generation of a runaway electron beam begins was determined.Decreasing the voltage pulse amplitude does not increase the beam current pulse width measured with a time resolution of~0.1 ns.It is shown that the escape of beam electrons to the downstream of the foil is sync in time with the voltage drop across the gap,and that the delay of beam current generation increases gradually from 1.1 ns to 2.6 ns as the voltage pulse amplitude across the gap decreases from~100 kV to 40 kV.