期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
AN ANALYSIS OF SPLITTING EXTRAPOLATION FOR MULTIDIMENSIONAL PROBLEMS
1
作者 吕涛 石济民 林振宝 《Systems Science and Mathematical Sciences》 SCIE EI CSCD 1990年第3期261-272,共12页
The splitting extrapolation is an important technique for solving multidimensionalproblems.In the case that error u<sup>h</sup>-u has an asymptotic expansion of form Σc<sub>α</sub>h<sup&g... The splitting extrapolation is an important technique for solving multidimensionalproblems.In the case that error u<sup>h</sup>-u has an asymptotic expansion of form Σc<sub>α</sub>h<sup>2α</sup>,whereα=(α<sub>1</sub>,…,α<sub>s</sub>) and h<sup>α</sup>=h<sub>1</sub><sup>α<sub>1</sub></sup>,…h<sub>s</sub><sup>α<sub>s</sub></sup>,the method gives an approximation involving less computerstorage and less computational work in comparison with the classical Richardson extrapolation.In this paper we present a recurrence rule of the splitting extrapolation and discuss itsapplications in the fields of multiple integrals,multidimensional integral equations,partialdifferential equations and singular perturbation problems. 展开更多
关键词 SPLITTING EXTRAPOLATION asymptoticexpansion RECURRENCE ALGORITHM MULTIDIMENSIONAL PROBLEMS
原文传递
正则摄动法求解典型的方程问题
2
作者 刘妍 《阴山学刊(自然科学版)》 2010年第3期5-10,共6页
本文主要研究摄动理论中的正则摄动法以及正则摄动法解决典型的微分方程问题,典型的方程形式主要解决三类不同类型的方程:Riccati方程、线性方程、非线性方程。
关键词 正则摄动法 微分方程 渐进展开 小参数ε
原文传递
具有二重半简特征值的静态分叉解及其稳定性
3
作者 霍麟春 《天津理工学院学报》 1998年第4期12-18,共7页
提出用分叉解幅值作为摄动参数,给出计算具有二重半简特征值一般演化系统静态分叉的摄动投影方法.提出一种新的判定静态分叉解稳定性的渐近展开方法.用本文方法计算了弹性基础上压杆后屈曲分支的渐近展开和稳定性.
关键词 二重半简特征值 稳定性 弹性基础 静态分叉解
下载PDF
Analytical Solution to the Density-Gradient Equation for MOS Quantum Tunneling
4
作者 刘垚 张明 +1 位作者 陈丽 余志平 《Tsinghua Science and Technology》 SCIE EI CAS 2011年第2期181-188,共8页
Engineering-oriented simulations of quantum mechanical tunneling are often based on density-gradient (DG) theory. This paper presents an analytical solution to the DG equation for quantum tunneling through an ultra-... Engineering-oriented simulations of quantum mechanical tunneling are often based on density-gradient (DG) theory. This paper presents an analytical solution to the DG equation for quantum tunneling through an ultra-thin oxide in a MOS capacitor with an n+ poly-silicon gate obtained using the method of matched asymptotic expansions. Tunneling boundary conditions extend the approximation into the entire region of the poty-silicon gate, oxide barrier, and substrate. An analytical solution in the form of an asymptotic series is obtained in each region by treating each part of the domain as a separate singular perturbation problem. The solutions are then combined through 'matching' to obtain an approximate solution for the whole domain. Analytical formulae are given for the electrostatic potential and the electron density profiles. The results capture the features of the quantum effects which are quite different from classical physics pre- dictions. The analytical results compare well with exact numerical solutions over a broad range of voltages and different oxide thicknesses. The analytical results predict the enhancement of the quantum tunneling effect as the oxide thickness is reduced. 展开更多
关键词 quantum tunneling density gradient singular perturbation theory matched asymptoticexpansions
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部