In this paper, we prove the existence of random attractors for a stochastic reaction-diffusion equation with distribution derivatives on unbounded domains. The nonlinearity is dissipative for large values of the state...In this paper, we prove the existence of random attractors for a stochastic reaction-diffusion equation with distribution derivatives on unbounded domains. The nonlinearity is dissipative for large values of the state and the stochastic nature of the equation appears spatially distributed temporal white noise. The stochastic reaction-diffusion equation is recast as a continuous random dynamical system and asymptotic compactness for this demonstrated by using uniform estimates far-field values of solutions. The results are new and appear to be optimal.展开更多
In this paper, we study the existence of global attractor of a class of three-dimensional Brinkman-Forchheimer equation in some unbounded domains which satisfies Poincaré inequality. We use the tail estimation me...In this paper, we study the existence of global attractor of a class of three-dimensional Brinkman-Forchheimer equation in some unbounded domains which satisfies Poincaré inequality. We use the tail estimation method to establish the asymptotic compactness of the solution operator and then prove the existence of the global attractor in(H_0~1(Ω))~3.展开更多
The aim of this work is to understand better the long time behaviour of asymptotically compact random dynamical systems (RDS), which can be generated by solutions of some stochastic partial differential equations on...The aim of this work is to understand better the long time behaviour of asymptotically compact random dynamical systems (RDS), which can be generated by solutions of some stochastic partial differential equations on unbounded domains. The conceptual analysis for the long time behavior of RDS will be done through some examples. An application of those analysis will be demonstrated through the proof of the existence of random attractors for asymptotically compact dissipative RDS.展开更多
This paper is concerned with the existence and upper semi-continuity of random attractors for the nonclassical diffusion equation with arbitrary polynomial growth nonlinearity and multiplicative noise in H<sup>1...This paper is concerned with the existence and upper semi-continuity of random attractors for the nonclassical diffusion equation with arbitrary polynomial growth nonlinearity and multiplicative noise in H<sup>1</sup>(R<sup>n</sup>). First, we study the existence and uniqueness of solutions by a noise arising in a continuous random dynamical system and the asymptotic compactness is established by using uniform tail estimate technique, and then the existence of random attractors for the nonclassical diffusion equation with arbitrary polynomial growth nonlinearity. As a motivation of our results, we prove an existence and upper semi-continuity of random attractors with respect to the nonlinearity that enters the system together with the noise.展开更多
The asymptotic behaviour of solutions for general partly dissipative reaction-diffusion systems in Rn is studied. The asymptotic compactness of the solutions and then the existence of the global attractor are proved i...The asymptotic behaviour of solutions for general partly dissipative reaction-diffusion systems in Rn is studied. The asymptotic compactness of the solutions and then the existence of the global attractor are proved in L2(Rn )× L2(Rn ) .展开更多
In this paper, we consider a non-autonomous model for epitaxial growth. It is shown that a pullback attractor of the model exists when the external force has exponential growth.
First we introduce two necessary and sufficient conditions which ensure the existence of the global attractors for semigroup. Then we recall the concept of measure of noncompactness of a set and recapitulate its basic...First we introduce two necessary and sufficient conditions which ensure the existence of the global attractors for semigroup. Then we recall the concept of measure of noncompactness of a set and recapitulate its basic properties. Finally, we prove that these two conditions are equivalent directly.展开更多
The long time behavior of the solutions of some partly dissipative reaction diffusion systems is studied. We prove the existence of a compact (L^2 × L^2 - H^1 × L^2) attractor for a partly dissipative reac...The long time behavior of the solutions of some partly dissipative reaction diffusion systems is studied. We prove the existence of a compact (L^2 × L^2 - H^1 × L^2) attractor for a partly dissipative reaction diffusion system in Rn. This improves a previous result obtained by A. Rodrigues-Bernal and B. Wang concerning the existence of a compact (L^2 × L^2 - L^2 × L^2) attractor for the same system.展开更多
In this paper, by proving the pullback asymptotic compactness of the stochastic lattice Selkov equations with the cubic nonlinearity, the existence of a random attractor of the stochastic lattice reversible Selkov equ...In this paper, by proving the pullback asymptotic compactness of the stochastic lattice Selkov equations with the cubic nonlinearity, the existence of a random attractor of the stochastic lattice reversible Selkov equations on infinite lattice with additive noises is proved.展开更多
We prove the existence of the global, but unbounded solution of the semilinear heat equations with critical Sobolev exponent, and that under some assumptions, the global unbounded classical solution concentrates on or...We prove the existence of the global, but unbounded solution of the semilinear heat equations with critical Sobolev exponent, and that under some assumptions, the global unbounded classical solution concentrates on origin as t→∞.展开更多
In this article, we discuss the long-time dynamical behavior of the stochastic non-autonomous nonclassical diffusion equations with linear memory and additive white noise in the weak topological space . By decompositi...In this article, we discuss the long-time dynamical behavior of the stochastic non-autonomous nonclassical diffusion equations with linear memory and additive white noise in the weak topological space . By decomposition method of the solution, we give the necessary condition of asymptotic compactness of the solutions, and then prove the existence of random attractor, while the time-dependent forcing term only satisfies an integral condition.展开更多
文摘In this paper, we prove the existence of random attractors for a stochastic reaction-diffusion equation with distribution derivatives on unbounded domains. The nonlinearity is dissipative for large values of the state and the stochastic nature of the equation appears spatially distributed temporal white noise. The stochastic reaction-diffusion equation is recast as a continuous random dynamical system and asymptotic compactness for this demonstrated by using uniform estimates far-field values of solutions. The results are new and appear to be optimal.
基金Supported by the National Natural Science Foundation of China (12001420)。
文摘In this paper, we study the existence of global attractor of a class of three-dimensional Brinkman-Forchheimer equation in some unbounded domains which satisfies Poincaré inequality. We use the tail estimation method to establish the asymptotic compactness of the solution operator and then prove the existence of the global attractor in(H_0~1(Ω))~3.
基金the National NSFC under grant No.50579022the Foundation of Pre-973 Program of China under grant No.2004CCA02500+1 种基金the SRF for the ROCS,SEMthe Talent Recruitment Foundation of HUST
文摘The aim of this work is to understand better the long time behaviour of asymptotically compact random dynamical systems (RDS), which can be generated by solutions of some stochastic partial differential equations on unbounded domains. The conceptual analysis for the long time behavior of RDS will be done through some examples. An application of those analysis will be demonstrated through the proof of the existence of random attractors for asymptotically compact dissipative RDS.
文摘This paper is concerned with the existence and upper semi-continuity of random attractors for the nonclassical diffusion equation with arbitrary polynomial growth nonlinearity and multiplicative noise in H<sup>1</sup>(R<sup>n</sup>). First, we study the existence and uniqueness of solutions by a noise arising in a continuous random dynamical system and the asymptotic compactness is established by using uniform tail estimate technique, and then the existence of random attractors for the nonclassical diffusion equation with arbitrary polynomial growth nonlinearity. As a motivation of our results, we prove an existence and upper semi-continuity of random attractors with respect to the nonlinearity that enters the system together with the noise.
文摘The asymptotic behaviour of solutions for general partly dissipative reaction-diffusion systems in Rn is studied. The asymptotic compactness of the solutions and then the existence of the global attractor are proved in L2(Rn )× L2(Rn ) .
基金The NSF(11401258)of Chinathe NSF(BK20140130)of Jiangsu Province
文摘In this paper, we consider a non-autonomous model for epitaxial growth. It is shown that a pullback attractor of the model exists when the external force has exponential growth.
文摘First we introduce two necessary and sufficient conditions which ensure the existence of the global attractors for semigroup. Then we recall the concept of measure of noncompactness of a set and recapitulate its basic properties. Finally, we prove that these two conditions are equivalent directly.
基金Supported by the Key Teachers Foundation of Chongqing University(No.2003018)the Key Teachers Foundation of Universities in Chongqing(No.20020126).
文摘The long time behavior of the solutions of some partly dissipative reaction diffusion systems is studied. We prove the existence of a compact (L^2 × L^2 - H^1 × L^2) attractor for a partly dissipative reaction diffusion system in Rn. This improves a previous result obtained by A. Rodrigues-Bernal and B. Wang concerning the existence of a compact (L^2 × L^2 - L^2 × L^2) attractor for the same system.
文摘In this paper, by proving the pullback asymptotic compactness of the stochastic lattice Selkov equations with the cubic nonlinearity, the existence of a random attractor of the stochastic lattice reversible Selkov equations on infinite lattice with additive noises is proved.
基金Thiswork was supported by Laboratory of Mathematics for Nonlinear Sciences of Fudan University and the National Natural Science Foundation of China.
文摘We prove the existence of the global, but unbounded solution of the semilinear heat equations with critical Sobolev exponent, and that under some assumptions, the global unbounded classical solution concentrates on origin as t→∞.
文摘In this article, we discuss the long-time dynamical behavior of the stochastic non-autonomous nonclassical diffusion equations with linear memory and additive white noise in the weak topological space . By decomposition method of the solution, we give the necessary condition of asymptotic compactness of the solutions, and then prove the existence of random attractor, while the time-dependent forcing term only satisfies an integral condition.