The influence of equal channel angular pressing on the tension-compression yield asymmetry of extruded Mg-5.3 Zn-0.6 Ca(weight percent)alloy has been investigated.The microstructure was obviously refined by the large ...The influence of equal channel angular pressing on the tension-compression yield asymmetry of extruded Mg-5.3 Zn-0.6 Ca(weight percent)alloy has been investigated.The microstructure was obviously refined by the large strain during the equal channel angular pressing,accompanied with very fine Ca_(2)Mg_(6)Zn_(3) phases with average diameter of 70 nm.The weak tension-compression yield asymmetry after equal channel angular pressing is mainly attributed to the reduced volume fraction of extension twinning during the compression,because the slope(k)of twinning in Hall-Petch relationship is higher than that of dislocation slip,and the twinning deformation is difficult to take place with decreasing grain size.The basal slip is more active in the alloy after equal channel angular pressing,due to the non-basal texture components,which hinders the twinning activation and reduces the yield asymmetry.Furthermore,the presence of fine precipitate restricts the twinning activation,which also contributes to the reduction of yield asymmetry.展开更多
Sandy bed cannot keep its original smoothness as the flows pass. With the increase of the flow intensity, the bed forms will appear as sand ripples and dune in turn. Among these morphologies, the sand ripple scale is ...Sandy bed cannot keep its original smoothness as the flows pass. With the increase of the flow intensity, the bed forms will appear as sand ripples and dune in turn. Among these morphologies, the sand ripple scale is the smallest, which is generally symmetrical when it just appears, but as time goes on, the asymmetrical form gradually develops. Just because of this sand ripples asymmetry, it manifests the influence of the flow on the bed morphology and also the impact on the laminar flow dynamical process, especially the stability characteristics. The stability features of laminar flow on open channels with the asymmetrical sand ripples are discussed, and also the results on the symmetrical sand ripples are compared in detail.展开更多
Abstract This paper focuses on the stability of capillary forced flow. In space, open capillary channels are widely used as the liquid and gas separation devices to manage liquid positioning and transportation. Surfac...Abstract This paper focuses on the stability of capillary forced flow. In space, open capillary channels are widely used as the liquid and gas separation devices to manage liquid positioning and transportation. Surface collapse happens when the flow rate exceeds the critical value, leading to a failure of propellant management. Knowledge of flow rate limitation is of great significance in design and optimization of propellant management devices (PMDs). However, the capillary flow rate limitation in an asymmetry channel has not been studied yet in the literature. In this paper, by introducing an equivalent angle to convert the asymmetry corner to a symmetry one, the one-dimensional theoretical model is developed. The flow rate limitation can then be investigated as a function of the channel geometry as well as liquid property based on the model. Comparisons between the asymmetry and symmetry channels bring forth the characteristics of the two kinds of channels, and demonstrate good accordance between the new advanced model and the existing one in the literature. This theoretical model can provide valuable reference for PMD designers.展开更多
An experimental muon source(EMuS) will be built at the China Spallation Neutron Source(CSNS). In phase I of CSNS, it has been decided that EMuS will provide a proton beam of 5 kW and 1.6 GeV to generate muon beams. A ...An experimental muon source(EMuS) will be built at the China Spallation Neutron Source(CSNS). In phase I of CSNS, it has been decided that EMuS will provide a proton beam of 5 kW and 1.6 GeV to generate muon beams. A 128-channel muon spin rotation/relaxation/resonance(μSR) spectrometer is proposed as a prototype surface muon spectrometer in a sub-branch of EMuS. The prototype spectrometer includes a detection system, sample environment, and supporting mechanics. The current design has two rings located at the forward and backward directions of the muon spin with 64 detectors per ring. The simulation shows that the highest asymmetry of approximately 0.28 is achieved by utilizing two 10-mm-thick brass degraders. To obtain the optimal asymmetry, the two-ring structure is updated to a four-ring structure with 32 segments in each ring. An asymmetry of 0.42 is obtained through the simulation, which is higher than that of all the current μSR spectrometers in the world.展开更多
The yield asymmetry between compression and tension of magnesium alloy Mg-3Al-1Zn(AZ31) with different grain sizes and textures has been studied by tensile and compressive testing of as-cast,as-extruded and equal ch...The yield asymmetry between compression and tension of magnesium alloy Mg-3Al-1Zn(AZ31) with different grain sizes and textures has been studied by tensile and compressive testing of as-cast,as-extruded and equal channel angular pressed(ECAPed) specimens.The significant yield asymmetry(the ratio of yield strength between compression and tension σyc/σyt is ~0.44) was found in as-extruded specimens and the corresponding microstructure evolution during deformation revealed that {10 ˉ 12} tensile twinning is the underlying reason for the large yield asymmetry.Strong texture and grain size are influential factors for large yield asymmetry.The separate contributions of grain size and texture on yield asymmetry were investigated.展开更多
The pre-scission neutrons measured in the reactions ^16O+^181Ta and ^19F+^178Hf are studied via a Langevin equation coupled with a statistical decay model. We find that because of the mass asymmetry of different ent...The pre-scission neutrons measured in the reactions ^16O+^181Ta and ^19F+^178Hf are studied via a Langevin equation coupled with a statistical decay model. We find that because of the mass asymmetry of different entrance channels, the spin distributions of compound nuclei would be different, consequently, the measured neutrons in these two reactions would also different. This means that the entrance channel will affect the particle emission in the fission process of hot nuclei.展开更多
基金The authors wish to highly acknowledge Prof.L.M.Wang of Changchun Institute of Applied Chemistry,Chinese Academy of Sciences,for his valuable suggestions and discussions.Thanks to the financial aid from the National Science&Technology Pillar Program(Grant No.2012BAE01B04)the National Natural Science Foundation of China(Grant No.51401200)the Natural Science Foundation of Jilin Province(Grant No.20140520099JH).
文摘The influence of equal channel angular pressing on the tension-compression yield asymmetry of extruded Mg-5.3 Zn-0.6 Ca(weight percent)alloy has been investigated.The microstructure was obviously refined by the large strain during the equal channel angular pressing,accompanied with very fine Ca_(2)Mg_(6)Zn_(3) phases with average diameter of 70 nm.The weak tension-compression yield asymmetry after equal channel angular pressing is mainly attributed to the reduced volume fraction of extension twinning during the compression,because the slope(k)of twinning in Hall-Petch relationship is higher than that of dislocation slip,and the twinning deformation is difficult to take place with decreasing grain size.The basal slip is more active in the alloy after equal channel angular pressing,due to the non-basal texture components,which hinders the twinning activation and reduces the yield asymmetry.Furthermore,the presence of fine precipitate restricts the twinning activation,which also contributes to the reduction of yield asymmetry.
基金supported by the National Basic Research Program of China (Grant No. 2007CB714101)the National Natural Science Founda-tion of China (Grant Nos. 50809045, 50979066 and 40776045)the Ph.D. Programs Foundation of Ministry of Education of China (Grant Nos. 200800561098 and 20070056118)
文摘Sandy bed cannot keep its original smoothness as the flows pass. With the increase of the flow intensity, the bed forms will appear as sand ripples and dune in turn. Among these morphologies, the sand ripple scale is the smallest, which is generally symmetrical when it just appears, but as time goes on, the asymmetrical form gradually develops. Just because of this sand ripples asymmetry, it manifests the influence of the flow on the bed morphology and also the impact on the laminar flow dynamical process, especially the stability characteristics. The stability features of laminar flow on open channels with the asymmetrical sand ripples are discussed, and also the results on the symmetrical sand ripples are compared in detail.
基金supported by the National Natural Science Foundation of China(Nos.50975280 and 61004094)
文摘Abstract This paper focuses on the stability of capillary forced flow. In space, open capillary channels are widely used as the liquid and gas separation devices to manage liquid positioning and transportation. Surface collapse happens when the flow rate exceeds the critical value, leading to a failure of propellant management. Knowledge of flow rate limitation is of great significance in design and optimization of propellant management devices (PMDs). However, the capillary flow rate limitation in an asymmetry channel has not been studied yet in the literature. In this paper, by introducing an equivalent angle to convert the asymmetry corner to a symmetry one, the one-dimensional theoretical model is developed. The flow rate limitation can then be investigated as a function of the channel geometry as well as liquid property based on the model. Comparisons between the asymmetry and symmetry channels bring forth the characteristics of the two kinds of channels, and demonstrate good accordance between the new advanced model and the existing one in the literature. This theoretical model can provide valuable reference for PMD designers.
基金supported by the National Natural Science Foundation of China(No.11527811)the Key Program of State Key Laboratory of Particle Detection and ElectronicsA part of the work performed in the UKRI ISIS Detector Group was sponsored by the China Scholarship Council
文摘An experimental muon source(EMuS) will be built at the China Spallation Neutron Source(CSNS). In phase I of CSNS, it has been decided that EMuS will provide a proton beam of 5 kW and 1.6 GeV to generate muon beams. A 128-channel muon spin rotation/relaxation/resonance(μSR) spectrometer is proposed as a prototype surface muon spectrometer in a sub-branch of EMuS. The prototype spectrometer includes a detection system, sample environment, and supporting mechanics. The current design has two rings located at the forward and backward directions of the muon spin with 64 detectors per ring. The simulation shows that the highest asymmetry of approximately 0.28 is achieved by utilizing two 10-mm-thick brass degraders. To obtain the optimal asymmetry, the two-ring structure is updated to a four-ring structure with 32 segments in each ring. An asymmetry of 0.42 is obtained through the simulation, which is higher than that of all the current μSR spectrometers in the world.
基金supported by the National Natural Science Foundation of China under Grant Nos.50471082 and 50571102
文摘The yield asymmetry between compression and tension of magnesium alloy Mg-3Al-1Zn(AZ31) with different grain sizes and textures has been studied by tensile and compressive testing of as-cast,as-extruded and equal channel angular pressed(ECAPed) specimens.The significant yield asymmetry(the ratio of yield strength between compression and tension σyc/σyt is ~0.44) was found in as-extruded specimens and the corresponding microstructure evolution during deformation revealed that {10 ˉ 12} tensile twinning is the underlying reason for the large yield asymmetry.Strong texture and grain size are influential factors for large yield asymmetry.The separate contributions of grain size and texture on yield asymmetry were investigated.
基金National Natural Science Foundation of China (10405007)
文摘The pre-scission neutrons measured in the reactions ^16O+^181Ta and ^19F+^178Hf are studied via a Langevin equation coupled with a statistical decay model. We find that because of the mass asymmetry of different entrance channels, the spin distributions of compound nuclei would be different, consequently, the measured neutrons in these two reactions would also different. This means that the entrance channel will affect the particle emission in the fission process of hot nuclei.