We consider a time independent one dimensional finite range and repulsive constant potential barrier between two impenetrable walls. For a nonrelativistic massive particle projected towards the potential with energies...We consider a time independent one dimensional finite range and repulsive constant potential barrier between two impenetrable walls. For a nonrelativistic massive particle projected towards the potential with energies less than the barrier and irrespective of the spatial positioning of the potential allowing for quantum tunneling, analytically we solve the corresponding Schrodinger equation. For a set of suitable parameters utilizing Mathematica we display the wave functions along with their associated probabilities for the entire region. We investigate the sensitivity of the probability distributions as a function of the potential range and display a gallery of our analysis. We extend our analysis for bound state particles confined within constant attractive potentials.展开更多
文摘We consider a time independent one dimensional finite range and repulsive constant potential barrier between two impenetrable walls. For a nonrelativistic massive particle projected towards the potential with energies less than the barrier and irrespective of the spatial positioning of the potential allowing for quantum tunneling, analytically we solve the corresponding Schrodinger equation. For a set of suitable parameters utilizing Mathematica we display the wave functions along with their associated probabilities for the entire region. We investigate the sensitivity of the probability distributions as a function of the potential range and display a gallery of our analysis. We extend our analysis for bound state particles confined within constant attractive potentials.