The proton transfer isomerization of pyrazole and the water assisting effect by looping 1 to 4 water molecules on the singlet state potential energy surface have been investigated by using hybrid density functional th...The proton transfer isomerization of pyrazole and the water assisting effect by looping 1 to 4 water molecules on the singlet state potential energy surface have been investigated by using hybrid density functional theory method (B3PW91) with a 6-311++G^** basis set. Two mechanisms were proposed to explain the mono- and multi-water assisting effects, respectively. The reactants and products of all groups have been characterized on their potential energy surfaces. For the isomerizafion of monomolecule pyrazole, the isomeriz'ation energy barrier is 46.4 kcal·mol^-1. For the monohydration assisting mechanism, the reactant complex is connected to the product complex via two saddle points. The corresponding isomerization barriers are 46.7and 23.0 kcal·mol^-1, respectively. As to the multihydration assisting mechanism, the isomerization barriers are 12.0, 10.9 and 13.14 kcal·mol^-1 accordingly, when the number of water molecules is 2, 3 and 4, respectively. The multihydration assisting isomerization can occur in water-dominated environments, for example, in the organism, and thereby is crucial to energy transference. The deproton and dehydrogen energies of monomolecule pyrazole and various hydrated pyrazoles were calculated and then found much bigger than the isomerization barriers of their relative complexes, suggesting the impossibility of deprotonation or dehydrogenation. The isomerization of pyrazole is a proton-coupling-electron-migration process, but two different mechanisms are noticed, viz. σ- and π-type mechanisms. The π-bond of pyrazole participates in isomerization in the π-type mechanism, whereas only o-electron takes part in isomerization in the σ-type mechanism.展开更多
基金supported by the National Natural Science Foundation of China (20633060)
文摘The proton transfer isomerization of pyrazole and the water assisting effect by looping 1 to 4 water molecules on the singlet state potential energy surface have been investigated by using hybrid density functional theory method (B3PW91) with a 6-311++G^** basis set. Two mechanisms were proposed to explain the mono- and multi-water assisting effects, respectively. The reactants and products of all groups have been characterized on their potential energy surfaces. For the isomerizafion of monomolecule pyrazole, the isomeriz'ation energy barrier is 46.4 kcal·mol^-1. For the monohydration assisting mechanism, the reactant complex is connected to the product complex via two saddle points. The corresponding isomerization barriers are 46.7and 23.0 kcal·mol^-1, respectively. As to the multihydration assisting mechanism, the isomerization barriers are 12.0, 10.9 and 13.14 kcal·mol^-1 accordingly, when the number of water molecules is 2, 3 and 4, respectively. The multihydration assisting isomerization can occur in water-dominated environments, for example, in the organism, and thereby is crucial to energy transference. The deproton and dehydrogen energies of monomolecule pyrazole and various hydrated pyrazoles were calculated and then found much bigger than the isomerization barriers of their relative complexes, suggesting the impossibility of deprotonation or dehydrogenation. The isomerization of pyrazole is a proton-coupling-electron-migration process, but two different mechanisms are noticed, viz. σ- and π-type mechanisms. The π-bond of pyrazole participates in isomerization in the π-type mechanism, whereas only o-electron takes part in isomerization in the σ-type mechanism.