The Panzhihua intrusion in southwest China is part of the Emeishan Large Igneous Province and host of a large Fe-Ti-V ore deposit.During emplacement of the main intrusion,multiple generations of mafic dykes invaded ca...The Panzhihua intrusion in southwest China is part of the Emeishan Large Igneous Province and host of a large Fe-Ti-V ore deposit.During emplacement of the main intrusion,multiple generations of mafic dykes invaded carbonate wall rocks,producing a large contact aureole.We measured the oxygen-isotope composition of the intrusions,their constituent minerals,and samples of the country rock.Magnetite and plagioclase from Panzhihua intrusion haveδ18O values that are consistent with magmatic equilibrium, and formed from magmas withδ18O values that were 1-2‰higher than expected in a mantle-derived magma.The unmetamorphosed country rock has highδ18O values,ranging from 13.2‰(sandstone) to 24.6-28.6‰(dolomite).The skarns and marbles from the aureole have lowerδ18O andδ13C values than their protolith suggesting interaction with fluids that were in exchange equilibrium with the adjacent mafic magmas and especially the numerous mafic dykes that intruded the aureole.This would explain the alteration ofδ18O of the dykes which have significantly higher values than expected for a mantle-derived magma.Depending on the exactδ18O values assumed for the magma and contaminant, the amount of assimilation required to produce the elevatedδ18O value of the Panzhihua intrusion was between 8 and 13.7 wt.%,assuming simple mixing.The exact mechanism of contamination is unclear but may involve a combination of assimilation of bulk country rock,mixing with a melt of the country rock and exchange with CO2-rich fluid derived from decarbonation of the marls and dolomites.These mechanisms,particularly the latter,were probably involved in the formation of the Fe-Ti-V ores.展开更多
Identification of the location and intensity of groundwater pollution source contributes to the effect of pollution remediation,and is called groundwater contaminant source identification.This is a kind of typical gro...Identification of the location and intensity of groundwater pollution source contributes to the effect of pollution remediation,and is called groundwater contaminant source identification.This is a kind of typical groundwater inverse problem,and the solution is usually ill-posed.Especially considering the spatial variability of hydraulic conductivity field,the identification process is more challenging.In this paper,the solution framework of groundwater contaminant source identification is composed with groundwater pollutant transport model(MT3DMS)and a data assimilation method(Iterative local update ensemble smoother,ILUES).In addition,Karhunen-Loève expansion technique is adopted as a PCA method to realize dimension reduction.In practical problems,the geostatistical method is usually used to characterize the hydraulic conductivity field,and only the contaminant source information is inversely calculated in the identification process.In this study,the identification of contaminant source information under Kriging K-field is compared with simultaneous identification of source information and K-field.The results indicate that it is necessary to carry out simultaneous identification under heterogeneous site,and ILUES has good performance in solving high-dimensional parameter inversion problems.展开更多
基金The project benefited from a PROCORE Hong Kong-France exchange grant to Arndt and Zhou and a grant from the US National Science Foundation
文摘The Panzhihua intrusion in southwest China is part of the Emeishan Large Igneous Province and host of a large Fe-Ti-V ore deposit.During emplacement of the main intrusion,multiple generations of mafic dykes invaded carbonate wall rocks,producing a large contact aureole.We measured the oxygen-isotope composition of the intrusions,their constituent minerals,and samples of the country rock.Magnetite and plagioclase from Panzhihua intrusion haveδ18O values that are consistent with magmatic equilibrium, and formed from magmas withδ18O values that were 1-2‰higher than expected in a mantle-derived magma.The unmetamorphosed country rock has highδ18O values,ranging from 13.2‰(sandstone) to 24.6-28.6‰(dolomite).The skarns and marbles from the aureole have lowerδ18O andδ13C values than their protolith suggesting interaction with fluids that were in exchange equilibrium with the adjacent mafic magmas and especially the numerous mafic dykes that intruded the aureole.This would explain the alteration ofδ18O of the dykes which have significantly higher values than expected for a mantle-derived magma.Depending on the exactδ18O values assumed for the magma and contaminant, the amount of assimilation required to produce the elevatedδ18O value of the Panzhihua intrusion was between 8 and 13.7 wt.%,assuming simple mixing.The exact mechanism of contamination is unclear but may involve a combination of assimilation of bulk country rock,mixing with a melt of the country rock and exchange with CO2-rich fluid derived from decarbonation of the marls and dolomites.These mechanisms,particularly the latter,were probably involved in the formation of the Fe-Ti-V ores.
基金supported by the Fundamental Research Funds for the Central Universities(No.22120190013)National Natural Science Foundation of China(No.41807187)
文摘Identification of the location and intensity of groundwater pollution source contributes to the effect of pollution remediation,and is called groundwater contaminant source identification.This is a kind of typical groundwater inverse problem,and the solution is usually ill-posed.Especially considering the spatial variability of hydraulic conductivity field,the identification process is more challenging.In this paper,the solution framework of groundwater contaminant source identification is composed with groundwater pollutant transport model(MT3DMS)and a data assimilation method(Iterative local update ensemble smoother,ILUES).In addition,Karhunen-Loève expansion technique is adopted as a PCA method to realize dimension reduction.In practical problems,the geostatistical method is usually used to characterize the hydraulic conductivity field,and only the contaminant source information is inversely calculated in the identification process.In this study,the identification of contaminant source information under Kriging K-field is compared with simultaneous identification of source information and K-field.The results indicate that it is necessary to carry out simultaneous identification under heterogeneous site,and ILUES has good performance in solving high-dimensional parameter inversion problems.