Due to the strict requirements of extremely high accuracy and fast computational speed, real-time transient stability assessment(TSA) has always been a tough problem in power system analysis.Fortunately, the developme...Due to the strict requirements of extremely high accuracy and fast computational speed, real-time transient stability assessment(TSA) has always been a tough problem in power system analysis.Fortunately, the development of artificial intelligence and big data technologies provide the new prospective methods to this issue, and there have been some successful trials on using intelligent method, such as support vector machine(SVM) method.However, the traditional SVM method cannot avoid false classification, and the interpretability of the results needs to be strengthened and clear.This paper proposes a new strategy to solve the shortcomings of traditional SVM,which can improve the interpretability of results, and avoid the problem of false alarms and missed alarms.In this strategy, two improved SVMs, which are called aggressive support vector machine(ASVM) and conservative support vector machine(CSVM), are proposed to improve the accuracy of the classification.And two improved SVMs can ensure the stability or instability of the power system in most cases.For the small amount of cases with undetermined stability, a new concept of grey region(GR) is built to measure the uncertainty of the results, and GR can assessment the instable probability of the power system.Cases studies on IEEE 39-bus system and realistic provincial power grid illustrate the effectiveness and practicability of the proposed strategy.展开更多
A hydraulic model-based emergency schedul- ing Decision Support System (DSS) is designed to eliminate the impact of sudden contamination incidents occurring upstream in raw water supply systems with multiple sources...A hydraulic model-based emergency schedul- ing Decision Support System (DSS) is designed to eliminate the impact of sudden contamination incidents occurring upstream in raw water supply systems with multiple sources. The DSS consists of four functional modules, including water quality prediction, system safety assessment, emergency strategy inference and scheduling optimization. The work flow of the DSS is as follows. First, the water quality variations on specific cross-sections are calculated given the pollution information. Next, a comprehensive evaluation on the safety of the current system is conducted using the outputs in the first module. This will assist in the assessment of whether the system is in danger of failure, taking both the impact of pollution and system capacity into account. If there is a severe impact of contamination on the reliability of the system, a fuzzy logic based inference module is employed to generate reason- able strategies including technical measures. Otherwise, a Genetic Algorithm (GA)-based optimization model will be used to find the least-cost scheduling plan. The proposed DSS has been applied to a coastal city in South China during a saline tide period as validation. Through scenario analysis, it is demonstrated that this DSS tool is instrumental in emergency scheduling for the water company to quickly and effectively respond to sudden contamination incidents.展开更多
基金supported by Science and Technology Project of State Grid Corporation of ChinaNational Natural Science Foundation of China (No.51777104)China State Key Laboratory of Power System (No.SKLD16Z08)
文摘Due to the strict requirements of extremely high accuracy and fast computational speed, real-time transient stability assessment(TSA) has always been a tough problem in power system analysis.Fortunately, the development of artificial intelligence and big data technologies provide the new prospective methods to this issue, and there have been some successful trials on using intelligent method, such as support vector machine(SVM) method.However, the traditional SVM method cannot avoid false classification, and the interpretability of the results needs to be strengthened and clear.This paper proposes a new strategy to solve the shortcomings of traditional SVM,which can improve the interpretability of results, and avoid the problem of false alarms and missed alarms.In this strategy, two improved SVMs, which are called aggressive support vector machine(ASVM) and conservative support vector machine(CSVM), are proposed to improve the accuracy of the classification.And two improved SVMs can ensure the stability or instability of the power system in most cases.For the small amount of cases with undetermined stability, a new concept of grey region(GR) is built to measure the uncertainty of the results, and GR can assessment the instable probability of the power system.Cases studies on IEEE 39-bus system and realistic provincial power grid illustrate the effectiveness and practicability of the proposed strategy.
文摘A hydraulic model-based emergency schedul- ing Decision Support System (DSS) is designed to eliminate the impact of sudden contamination incidents occurring upstream in raw water supply systems with multiple sources. The DSS consists of four functional modules, including water quality prediction, system safety assessment, emergency strategy inference and scheduling optimization. The work flow of the DSS is as follows. First, the water quality variations on specific cross-sections are calculated given the pollution information. Next, a comprehensive evaluation on the safety of the current system is conducted using the outputs in the first module. This will assist in the assessment of whether the system is in danger of failure, taking both the impact of pollution and system capacity into account. If there is a severe impact of contamination on the reliability of the system, a fuzzy logic based inference module is employed to generate reason- able strategies including technical measures. Otherwise, a Genetic Algorithm (GA)-based optimization model will be used to find the least-cost scheduling plan. The proposed DSS has been applied to a coastal city in South China during a saline tide period as validation. Through scenario analysis, it is demonstrated that this DSS tool is instrumental in emergency scheduling for the water company to quickly and effectively respond to sudden contamination incidents.