由于跟踪过程目标不规则形变的影响,采用固定纵横比的尺度模型无法精确地估计目标的尺度.为解决该问题,本文提出基于纵横比自适应的相关滤波跟踪算法.基于fDSST(fast Discriminative Scale Space Tracking)算法,训练学习纵横比模型,更...由于跟踪过程目标不规则形变的影响,采用固定纵横比的尺度模型无法精确地估计目标的尺度.为解决该问题,本文提出基于纵横比自适应的相关滤波跟踪算法.基于fDSST(fast Discriminative Scale Space Tracking)算法,训练学习纵横比模型,更新目标的纵横比,获取更精确的目标尺度.在此基础上,本文设计了平滑修正方案以及学习率自适应机制,可以有效地缓解因目标出现遮挡导致的模型漂移问题.在OTB100、VOT2016和VOT2018数据集上与其他跟踪算法进行对比实验,结果表明本文算法改善了基准算法的性能,特别是在OTB100上的总体准确率和成功率比fDSST提高了9.6%和6.2%.展开更多
文摘由于跟踪过程目标不规则形变的影响,采用固定纵横比的尺度模型无法精确地估计目标的尺度.为解决该问题,本文提出基于纵横比自适应的相关滤波跟踪算法.基于fDSST(fast Discriminative Scale Space Tracking)算法,训练学习纵横比模型,更新目标的纵横比,获取更精确的目标尺度.在此基础上,本文设计了平滑修正方案以及学习率自适应机制,可以有效地缓解因目标出现遮挡导致的模型漂移问题.在OTB100、VOT2016和VOT2018数据集上与其他跟踪算法进行对比实验,结果表明本文算法改善了基准算法的性能,特别是在OTB100上的总体准确率和成功率比fDSST提高了9.6%和6.2%.
文摘为了提高合成孔径雷达(synthetic aperture radar,SAR)自动目标识别系统的性能,提出了一种新的SAR目标方位角估计方法。利用简单的自适应阈值处理提取目标区强散射点,通过对强散射点在不同方向上投影分布的分析,定义法向前边界响应强度作为方位角估计的依据,最后对个别不可信结果进行90°校正。在运动和静止目标获取与识别(moving and stationary target acquisition and recognition,MSTAR)公开数据集上进行了实验,采用该方法99%的样本估计误差小于10°。实验结果表明,该方法可以达到与主导边界拟合法相当的最优性能,而且处理流程简单,计算效率更高。
文摘针对合成孔径雷达(Synthetic Aperture Radar,SAR)图像目标方位角问题,提出一种基于相关性分析的估计方法。考虑到存在的180度模糊问题,待估计图像与每一类训练样本的相关系数曲线均呈现双峰值的特性。根据各类相关系数曲线的峰值位置,采用线性加权的方法可以实现高效率、高精度估计目标方位角并且有效克服180度模糊问题。为了验证本文方法的有效性,基于MSTAR(Moving and Stationary Target Acquisition and Recognition)公共数据集进行了方位角估计实验。实验结果表明,本文方法对于99%以上的测试样本的估计精度可以达到±10°以内,对于95. 38%的测试样本的估计精度可以达到±5°以内。