期刊文献+
共找到8篇文章
< 1 >
每页显示 20 50 100
从工业4.0到能源5.0:智能能源系统的概念、内涵及体系框架 被引量:58
1
作者 邓建玲 王飞跃 +1 位作者 陈耀斌 赵向阳 《自动化学报》 EI CSCD 北大核心 2015年第12期2003-2016,共14页
分析推动工业进程和能源进程交互发展的因素和趋势,结合能源互联网的发展要求,提出了建立能源5.0的迫切性和必要性.着重讨论了在网络化之后,能源系统呈现的社会性问题,认为在传统方式之外,必须引入人类社会学、管理学等软科学进行分析建... 分析推动工业进程和能源进程交互发展的因素和趋势,结合能源互联网的发展要求,提出了建立能源5.0的迫切性和必要性.着重讨论了在网络化之后,能源系统呈现的社会性问题,认为在传统方式之外,必须引入人类社会学、管理学等软科学进行分析建模;指出了虚拟人工系统根本不同于传统仿真系统等理念,只有利用虚拟人工模型,采用平行系统,才能建立能源5.0.阐述了能源5.0的理论、框架和技术,明确了能源5.0、基于社会物理信息系统(Cyber-physical-social system,CPSS)的平行能源是等价的概念.指出能源5.0核心是构建与实际能源系统同构的虚拟人工能源系统,通过虚拟人工能源系统的计算实验,确定优化控制策略,引导实际能源系统运行,并使虚拟人工系统和实际系统平行执行、共同演化,形成智能能源系统.最后以华电集团已经完成的分布式能源5.0示范项目和正在实施的火力发电5.0项目及智能家居能源系统,探讨了能源5.0的研究内容、技术途径及应用前景. 展开更多
关键词 能源5.0 人工能源系统 平行能源系统 智能能源系统 社会物理信息系统
下载PDF
人工智能技术在油气综合能源系统中的应用研究综述
2
作者 刘秀如 韩硕 +4 位作者 李昱瑾 马文略 游双矫 朱新宇 岳小文 《国际石油经济》 2024年第7期7-16,61,共11页
人工智能技术在综合能源系统中的应用主要包括能源管理、油气产能预测、负荷和发电量预测、故障检测和容错控制、储能系统智能调度等方面,其能够有效处理系统的随机性和负荷变化,提高系统的预测和调度能力,优化多能源系统的协调调度,提... 人工智能技术在综合能源系统中的应用主要包括能源管理、油气产能预测、负荷和发电量预测、故障检测和容错控制、储能系统智能调度等方面,其能够有效处理系统的随机性和负荷变化,提高系统的预测和调度能力,优化多能源系统的协调调度,提升整体能源利用效率。从人工智能技术的发展趋势看,基于大语言模型的综合智能体正在成为应用的主流模式,但在其应用过程中,仍然面临以下几个方面的挑战:1)多智能体系统中的协调与控制;2)物联网与边缘计算的应用;3)综合能源系统的优化与人机协作;4)绿色人工智能。 展开更多
关键词 人工智能技术 油气资源 综合能源系统 协调调度
下载PDF
基于智能技术和机器学习的储能系统容量优化与管理策略分析
3
作者 时超群 孟涵昭 《电子技术(上海)》 2024年第6期320-321,共2页
阐述基于人工智能和机器学习的储能系统容量优化与管理策略,分析其在储能系统容量优化与管理中的应用。针对储能系统的特点,构建优化模型,分析管理策略,以提高储能系统的性能和稳定性。
关键词 人工智能 机器学习 储能系统 容量优化 管理策略
原文传递
Neural Network Based Feasible Region Approximation Model for Optimal Operation of Integrated Electricity and Heating System
4
作者 Xuewei Wu Bin Zhang +1 位作者 Mads Pagh Nielsen Zhe Chen 《CSEE Journal of Power and Energy Systems》 SCIE EI CSCD 2023年第5期1808-1819,共12页
This paper proposes a neural network based feasible region approximation model of a district heating system(DHS),and it is intended to be used for optimal operation of integrated electricity and heating system(IEHS)co... This paper proposes a neural network based feasible region approximation model of a district heating system(DHS),and it is intended to be used for optimal operation of integrated electricity and heating system(IEHS)considering privacy protection.In this model,a neural network is trained to approximate the feasible region of the DHS operation and then is reformulated as a set of mixed-integer linear constraints.Based on the received approximation models of DHSs and detailed electricity system model,the electricity operator conducts centralized optimization,and then sends specific heating generation plans back to corresponding heating operators.Furthermore,subsequent optimization is formulated for each DHS to obtain detailed operation strategy based on received heating generation plan.In this scheme,optimization of the IEHS could be achieved and privacy protection requirement is satisfied since the feasible region approximation model does not contain detailed system parameters.Case studies conducted on a small-scale system demonstrate accuracy of the proposed strategy and a large-scale system verify its application possibility. 展开更多
关键词 artificial intelligence district heating system integrated energy system machine learning multi-energy systems neural network optimal operation wind power
原文传递
Safe operation of online learning data driven model predictive control of building energy systems
5
作者 Phillip Stoffel Patrick Henkel +2 位作者 Martin Ratz Alexander Kumpel Dirk Muller 《Energy and AI》 2023年第4期536-549,共14页
Model predictive control is a promising approach to reduce the CO 2 emissions in the building sector.However,the vast modeling effort hampers the widescale practical application.Here,data-driven process models,like ar... Model predictive control is a promising approach to reduce the CO 2 emissions in the building sector.However,the vast modeling effort hampers the widescale practical application.Here,data-driven process models,like artificial neural networks,are well-suited to automatize the modeling.However,the underlying data set strongly determines the quality and reliability of artificial neural networks.In general,the validity domain of a machine learning model is limited to the data that was used to train it.Predictions based on system states outside that domain,so-called extrapolations,are unreliable and can negatively influence the control quality.We present a safe operation approach combined with online learning to deal with extrapolation in data-driven model predictive control.Here,the k-nearest neighbor algorithm is used to detect extrapolation to switch to a robust fallback controller.By continuously retraining the artificial neural networks during operation,we successively increase the validity domain of the artificial neural networks and the control quality.We apply the approach to control a building energy system provided by the BOPTEST framework.We compare controllers based on two data sets,one with extensive system excitation and one with baseline operation.The system is controlled to a fixed temperature set point in baseline operation.Therefore,the artificial neural networks trained on this data set tend to extrapolate in other operating points.We show that safe operation in combination with online learning significantly improves performance. 展开更多
关键词 Data-driven model predictive control Online learning Novelty detection artificial neural networks Building energy systems
原文传递
Hybrid Power Systems Energy Controller Based on Neural Network and Fuzzy Logic 被引量:2
6
作者 Emad M. Natsheh Alhussein Albarbar 《Smart Grid and Renewable Energy》 2013年第2期187-197,共11页
This paper presents a novel adaptive scheme for energy management in stand-alone hybrid power systems. The proposed management system is designed to manage the power flow between the hybrid power system and energy sto... This paper presents a novel adaptive scheme for energy management in stand-alone hybrid power systems. The proposed management system is designed to manage the power flow between the hybrid power system and energy storage elements in order to satisfy the load requirements based on artificial neural network (ANN) and fuzzy logic controllers. The neural network controller is employed to achieve the maximum power point (MPP) for different types of photovoltaic (PV) panels. The advance fuzzy logic controller is developed to distribute the power among the hybrid system and to manage the charge and discharge current flow for performance optimization. The developed management system performance was assessed using a hybrid system comprised PV panels, wind turbine (WT), battery storage, and proton exchange membrane fuel cell (PEMFC). To improve the generating performance of the PEMFC and prolong its life, stack temperature is controlled by a fuzzy logic controller. The dynamic behavior of the proposed model is examined under different operating conditions. Real-time measured parameters are used as inputs for the developed system. The proposed model and its control strategy offer a proper tool for optimizing hybrid power system performance, such as that used in smart-house applications. 展开更多
关键词 artificial NEURAL Network energy Management Fuzzy Control Hybrid POWER systems MAXIMUM POWER Point TRACKER Modeling
下载PDF
A comprehensive review of electrochemical hybrid power supply systems and intelligent energy managements for unmanned aerial vehicles in public services 被引量:1
7
作者 Caizhi Zhang Yuqi Qiu +5 位作者 Jiawei Chen Yuehua Li Zhitao Liu Yang Liu Jiujun Zhang Chan Siew Hwa 《Energy and AI》 2022年第3期148-171,共24页
The electric unmanned aerial vehicles (UAVs) are rapidly growing due to their abilities to perform some difficult or dangerous tasks as well as many public services including real-time monitoring, wireless coverage, s... The electric unmanned aerial vehicles (UAVs) are rapidly growing due to their abilities to perform some difficult or dangerous tasks as well as many public services including real-time monitoring, wireless coverage, search and rescue, wildlife surveys, and precision agriculture. However, the electrochemical power supply system of UAV is a critical issue in terms of its energy/power densities and lifetime for service endurance. In this paper, the current power supply systems used in UAVs are comprehensively reviewed and analyzed on the existing power configurations and the energy management systems. It is identified that a single type of electrochemical power source is not enough to support a UAV to achieve a long-haul flight;hence, a hybrid power system architecture is necessary. To make use of the advantages of each type of power source to increase the endurance and achieve good performance of the UAVs, the hybrid systems containing two or three types of power sources (fuel cell,battery, solar cell, and supercapacitor,) have to be developed. In this regard, the selection of an appropriate hybrid power structure with the optimized energy management system is critical for the efficient operation of a UAV. It is found that the data-driven models with artificial intelligence (AI) are promising in intelligent energy management. This paper can provide insights and guidelines for future research and development into the design and fabrication of the advanced UAV power systems. 展开更多
关键词 Unmanned aerial vehicles(UAVs) Power supply system Fuel cell system artificial intelligence(AI) energy management systems
原文传递
人工智能及其在含可再生能源电源的电网安全中的应用(英文) 被引量:6
8
作者 Raj Kumar Aggarwal 《电网技术》 EI CSCD 北大核心 2007年第20期46-54,共9页
文章概述了用于解决电网复杂问题的当前最高水平的人工智能技术,总结了可再生能源发电系统的发展现状,讨论了将可再生能源发电系统联接到电网中时需要考虑的几个问题。文中还较详细地讨论了近年来发生在欧美电网中的大停电事故。最后扼... 文章概述了用于解决电网复杂问题的当前最高水平的人工智能技术,总结了可再生能源发电系统的发展现状,讨论了将可再生能源发电系统联接到电网中时需要考虑的几个问题。文中还较详细地讨论了近年来发生在欧美电网中的大停电事故。最后扼要介绍了一些基于人工智能的用于解决复杂问题的技术,特别是用于增强含有可再生能源发电的电网及老化电网的安全性的技术。 展开更多
关键词 人工智能 电网安全 可再生能源发电系统 状态监视 欧美大停电事故
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部