Humic-like substances(HULIS)are a major component of brown carbon and consequently play a major role in climate change.In this study,70 PM_(2.5) samples were collected from Xi'an in winter 2019 and summer 2020.Neu...Humic-like substances(HULIS)are a major component of brown carbon and consequently play a major role in climate change.In this study,70 PM_(2.5) samples were collected from Xi'an in winter 2019 and summer 2020.Neutral HULIS(HULIS-n),acidic HULIS(HULIS-a),and high-polarity water-soluble organic compounds(HP-WSOC)were analyzed to determine their carbon concentrations and measure their ultraviolet-visible absorption and infrared spectra.Of the three components,HULIS-n had the highest carbon content in both winter(3.29±1.45μg m^(-3))and in summer(1.38±1.10μg m^(-3)).The semi-quantitative results for the functional groups revealed that HP-WSOC was rich in carboxylic acids and had high aromaticity in winter,whereas HULIS-n was rich in carboxylic acids in summer.Moreover,HULJS-a was richer in nitrate esters and saturated aliphatic hydrocarbons in summer than in winter.The results for specific ultraviolet absorbance(SUVA)and E_(250)/E_(365) revealed that HULIS had higher molecular weight and aromaticity in winter than in summer.HULIS-n dominated in the total light absorption of HULIS+HP-WSOC in both winter(73.08%)and summer(48.57%).Overall,the results on the carbon content,optical properties,and functional groups of WSOCs with differing polarity can improve un-derstanding of environmental and climatic effects.展开更多
The structural parameters of nine Indian coals were determined by X-ray diffraction (XRD) and Kaman spectroscopy. The study revealed that the coals contain crystalline carbon of turbostratic structure with amorphous...The structural parameters of nine Indian coals were determined by X-ray diffraction (XRD) and Kaman spectroscopy. The study revealed that the coals contain crystalline carbon of turbostratic structure with amorphous carbon. The stacking height (Lc) and interlayer spacing (rico2) of the crystallite structure of the coals ranged from 1.986 to 2.373 nm and from 0.334 to 0.340 nm, respectively. The degree of graphitization was calculated to range from 42% to 99%, thereby confirming the ordering of the carbon layers with the increase in coal rank. An exponential correlation was observed among the aromaticity (fa), the lateral size (La), and the rank (I20/I26), suggesting that the coal crystallites are nanocrystalline in nature. A very strong correlation was observed between the structural parameters (fa, d002, Lc, the H/C ratio, and I20/I26), the volatile matter content, and the elemental carbon content, indicating the structures of coals are controlled by the degree of contact metamorphism. The Raman spectra exhibited two prominent bands: the graphitic band (G) and the fn'st-order characteristic defect band (D). The deconvolufion resulted in five peaks: G, D1, D2, D3, and D4. The intense D1 band, which appeared at -1350 cm^-1, corresponds to a lattice vibration mode with Alg symmetry. The D2 mode, which appeared at -1610 cm^-1, arises from the structural disorder as a shoulder on the G band.展开更多
Understanding the structure-property relationships in polycyclic conjugated hydrocarbons(PCHs)is crucial in controlling their electronic properties and developing new optically functional materials.Aromaticity is a fu...Understanding the structure-property relationships in polycyclic conjugated hydrocarbons(PCHs)is crucial in controlling their electronic properties and developing new optically functional materials.Aromaticity is a fundamentally important and intriguing property of numerous organic chemical structures and has stimulated a myriad of experimental and theoretical investigations.Exploiting aromaticity rules for the rational design of optoelectronic materials with the desired photophysical characteristics is a challenging yet fascinating task.Herein we present an in-depth computational and spectroscopic study on the structure-property relationships of dinaphthopentalenes(DNPs).Results highlight that the different fusion patterns between 4nπand 4n+2πunits endow these PCHs with the tunable aromaticity in the ground state/excited state,which leads to the diverse electronic structures and consequently the distinctive excited state photophysics.Accordingly,we propose a combined aromaticity design strategy for rationally modulating and tailoring electronic and optical properties of PCH skeletons.These outcomes not only present a full picture of the excited state dynamics of the DNP system and afford a new class of efficient singlet fission-active materials but also provide some basic guidelines for exploiting aromaticity rules to design and develop new optical function materials.展开更多
基金supported by the Key R&D project of Shaanxi Province(grant No.2022zDLSF06-07)Chinese Academy of Sciences(CAS)“Light of West China”Program(grant No.XAB2021YN06)the State Key Laboratory of Loess and Quaternary Geology,Institute of Earth Environment,CAs(grant No.SKLLQG2103,SKLLQG2110)was also thanked.
文摘Humic-like substances(HULIS)are a major component of brown carbon and consequently play a major role in climate change.In this study,70 PM_(2.5) samples were collected from Xi'an in winter 2019 and summer 2020.Neutral HULIS(HULIS-n),acidic HULIS(HULIS-a),and high-polarity water-soluble organic compounds(HP-WSOC)were analyzed to determine their carbon concentrations and measure their ultraviolet-visible absorption and infrared spectra.Of the three components,HULIS-n had the highest carbon content in both winter(3.29±1.45μg m^(-3))and in summer(1.38±1.10μg m^(-3)).The semi-quantitative results for the functional groups revealed that HP-WSOC was rich in carboxylic acids and had high aromaticity in winter,whereas HULIS-n was rich in carboxylic acids in summer.Moreover,HULJS-a was richer in nitrate esters and saturated aliphatic hydrocarbons in summer than in winter.The results for specific ultraviolet absorbance(SUVA)and E_(250)/E_(365) revealed that HULIS had higher molecular weight and aromaticity in winter than in summer.HULIS-n dominated in the total light absorption of HULIS+HP-WSOC in both winter(73.08%)and summer(48.57%).Overall,the results on the carbon content,optical properties,and functional groups of WSOCs with differing polarity can improve un-derstanding of environmental and climatic effects.
文摘The structural parameters of nine Indian coals were determined by X-ray diffraction (XRD) and Kaman spectroscopy. The study revealed that the coals contain crystalline carbon of turbostratic structure with amorphous carbon. The stacking height (Lc) and interlayer spacing (rico2) of the crystallite structure of the coals ranged from 1.986 to 2.373 nm and from 0.334 to 0.340 nm, respectively. The degree of graphitization was calculated to range from 42% to 99%, thereby confirming the ordering of the carbon layers with the increase in coal rank. An exponential correlation was observed among the aromaticity (fa), the lateral size (La), and the rank (I20/I26), suggesting that the coal crystallites are nanocrystalline in nature. A very strong correlation was observed between the structural parameters (fa, d002, Lc, the H/C ratio, and I20/I26), the volatile matter content, and the elemental carbon content, indicating the structures of coals are controlled by the degree of contact metamorphism. The Raman spectra exhibited two prominent bands: the graphitic band (G) and the fn'st-order characteristic defect band (D). The deconvolufion resulted in five peaks: G, D1, D2, D3, and D4. The intense D1 band, which appeared at -1350 cm^-1, corresponds to a lattice vibration mode with Alg symmetry. The D2 mode, which appeared at -1610 cm^-1, arises from the structural disorder as a shoulder on the G band.
基金supported by the National Natural Science Foundation of China(grant nos.22005210,21833005,and 22231009).
文摘Understanding the structure-property relationships in polycyclic conjugated hydrocarbons(PCHs)is crucial in controlling their electronic properties and developing new optically functional materials.Aromaticity is a fundamentally important and intriguing property of numerous organic chemical structures and has stimulated a myriad of experimental and theoretical investigations.Exploiting aromaticity rules for the rational design of optoelectronic materials with the desired photophysical characteristics is a challenging yet fascinating task.Herein we present an in-depth computational and spectroscopic study on the structure-property relationships of dinaphthopentalenes(DNPs).Results highlight that the different fusion patterns between 4nπand 4n+2πunits endow these PCHs with the tunable aromaticity in the ground state/excited state,which leads to the diverse electronic structures and consequently the distinctive excited state photophysics.Accordingly,we propose a combined aromaticity design strategy for rationally modulating and tailoring electronic and optical properties of PCH skeletons.These outcomes not only present a full picture of the excited state dynamics of the DNP system and afford a new class of efficient singlet fission-active materials but also provide some basic guidelines for exploiting aromaticity rules to design and develop new optical function materials.