Based on the GC-MS analytical data of aromatic fractions of over forty highly mature coal-bearing source rock samples collected from the Upper Triassic Xujiahe Formation in the northern Sichuan Basin, the thermal evol...Based on the GC-MS analytical data of aromatic fractions of over forty highly mature coal-bearing source rock samples collected from the Upper Triassic Xujiahe Formation in the northern Sichuan Basin, the thermal evolution of aromatic hydrocarbons during late-mature to over-mature stage (R0=1.13%-2.85%) was characterized, and aromatic indicators suitable for recognizing the organic source and sedimentary environment of high maturity source rocks were discussed. The results indicated that the concentrations of low carbon-cycle naphthalene as well phenanthrene series reduce gradually with increasing Ro at the highly mature levels. However, some high-cyclic components such as chrysene, benzofluoranthene, and benzo[e]pyrene are relatively enriched, in companying an enhancement of parent aromatic compounds. The variations are attributed to thermal cracking and polymerization reactions due to continuous dehydrogenation under enhanced burial temperature. As thermal maturity rises, MPI1 (Methylphenanthrene Index) values display a two-modal varying trend, namely, increasing when Ro is below 1.80% and decreasing above 1.8% Ro. The relationships between Ro and MPI1 are Ro=0.98MPI1+0.37 for R0〈1.80% and R0=-0.90MPI1+3.02 at R0〉1.8%, being different from the previous research. The amount of dibenzofurans declines sharply at Ro higher than 1.1%, leading to a significant change of relative composition among dibenzothiophenes, dibenzofurans and fluorenes (referred as three-fluorenes series composition). Thus, this parameter appears to be unsuitable for identifying the sedimentary environment of the highly matured source rocks. 4-/1-MDBT (methyldibenzothiophene) ratio could be served as an effective indicator for organic facies, and can distinguish coals from mudstones at over-maturity in this case. The ratios of 2,6-/2,10-DMP (dimethylphenanthrene) and 1,7-/1,9-DMP and relative abundance of triaromatic steroids in these highly mature rocks could be considered as biological source parameters for relati展开更多
Lubricating mineral base oils are normally extracted from lube-oil cuts with furfural solvent.Aromatic content in the raffinate phase from extraction process is an essential parameter that affects the quality of the l...Lubricating mineral base oils are normally extracted from lube-oil cuts with furfural solvent.Aromatic content in the raffinate phase from extraction process is an essential parameter that affects the quality of the lubricating base-oils.For determination of aromatic content by the usual ASTM D3238 method,density,refractive index and molecular weight of the raffinate are required.In this work,a new generalized correlation is developed for de-termination the aromatic content by using only the measured viscosity of lubricating oil.With a mole fraction of aromatic compounds,the kinematic viscosity may be obtained at any temperature between 60-100°C along with their molecular weight and refractive index.展开更多
基金supported by the Key State Science and Technology Project(Grant No.2011ZX05005-03-009HZ)the Specialized Research Fund for the Doctoral Program of Higher Education(Grant No.20130101110051)
文摘Based on the GC-MS analytical data of aromatic fractions of over forty highly mature coal-bearing source rock samples collected from the Upper Triassic Xujiahe Formation in the northern Sichuan Basin, the thermal evolution of aromatic hydrocarbons during late-mature to over-mature stage (R0=1.13%-2.85%) was characterized, and aromatic indicators suitable for recognizing the organic source and sedimentary environment of high maturity source rocks were discussed. The results indicated that the concentrations of low carbon-cycle naphthalene as well phenanthrene series reduce gradually with increasing Ro at the highly mature levels. However, some high-cyclic components such as chrysene, benzofluoranthene, and benzo[e]pyrene are relatively enriched, in companying an enhancement of parent aromatic compounds. The variations are attributed to thermal cracking and polymerization reactions due to continuous dehydrogenation under enhanced burial temperature. As thermal maturity rises, MPI1 (Methylphenanthrene Index) values display a two-modal varying trend, namely, increasing when Ro is below 1.80% and decreasing above 1.8% Ro. The relationships between Ro and MPI1 are Ro=0.98MPI1+0.37 for R0〈1.80% and R0=-0.90MPI1+3.02 at R0〉1.8%, being different from the previous research. The amount of dibenzofurans declines sharply at Ro higher than 1.1%, leading to a significant change of relative composition among dibenzothiophenes, dibenzofurans and fluorenes (referred as three-fluorenes series composition). Thus, this parameter appears to be unsuitable for identifying the sedimentary environment of the highly matured source rocks. 4-/1-MDBT (methyldibenzothiophene) ratio could be served as an effective indicator for organic facies, and can distinguish coals from mudstones at over-maturity in this case. The ratios of 2,6-/2,10-DMP (dimethylphenanthrene) and 1,7-/1,9-DMP and relative abundance of triaromatic steroids in these highly mature rocks could be considered as biological source parameters for relati
文摘Lubricating mineral base oils are normally extracted from lube-oil cuts with furfural solvent.Aromatic content in the raffinate phase from extraction process is an essential parameter that affects the quality of the lubricating base-oils.For determination of aromatic content by the usual ASTM D3238 method,density,refractive index and molecular weight of the raffinate are required.In this work,a new generalized correlation is developed for de-termination the aromatic content by using only the measured viscosity of lubricating oil.With a mole fraction of aromatic compounds,the kinematic viscosity may be obtained at any temperature between 60-100°C along with their molecular weight and refractive index.