This paper studies two kinds of nonlinear transformations, namely the higher-dimensional Arnold transformation and the higher-dimensional Fibonacci Q-transformation and discusses the scrambling action of the two trans...This paper studies two kinds of nonlinear transformations, namely the higher-dimensional Arnold transformation and the higher-dimensional Fibonacci Q-transformation and discusses the scrambling action of the two transformations focusing on the phase space of the digital images. A sufficient and necessary condition that a matrix transformation of digital image has periodicity is given. The results show that the two transformations have potential application in the storage and transportation of image information for the purpose of information security.展开更多
An improved digital image scrambling method based on Arnold transform is proposed. The method can be used for the rectangle image by splitting rectangle image into several square images. Furthermore, a pretreatment is...An improved digital image scrambling method based on Arnold transform is proposed. The method can be used for the rectangle image by splitting rectangle image into several square images. Furthermore, a pretreatment is added to speeding up the process and enhancing the scrambling effect. The recovering of the scrambled image depends on the reverse Arnold transform that has the same cycle times with the Arnold transform. The recovering is Iossless and need not calculating the period of the Arnold transform. Finally, experimental results show the robustness of the method.展开更多
In recent years, the chaos based cryptographic algorithms have suggested some new and efficient ways to develop secure image encryption techniques. This paper proposes a new approach for image encryption based on a hi...In recent years, the chaos based cryptographic algorithms have suggested some new and efficient ways to develop secure image encryption techniques. This paper proposes a new approach for image encryption based on a high-dimensional chaotic map. The new scheme employs the Cat map to shuffle the positions, then to confuse the relationship between the cipher-image and the plain-image using the high-dimensional Lorenz chaotic map preprocessed. The results of experimental, statistical analysis and key space analysis show that the proposed image encryption scheme provides an efficient and secure way for real-time image encryption and transmission.展开更多
文摘This paper studies two kinds of nonlinear transformations, namely the higher-dimensional Arnold transformation and the higher-dimensional Fibonacci Q-transformation and discusses the scrambling action of the two transformations focusing on the phase space of the digital images. A sufficient and necessary condition that a matrix transformation of digital image has periodicity is given. The results show that the two transformations have potential application in the storage and transportation of image information for the purpose of information security.
文摘An improved digital image scrambling method based on Arnold transform is proposed. The method can be used for the rectangle image by splitting rectangle image into several square images. Furthermore, a pretreatment is added to speeding up the process and enhancing the scrambling effect. The recovering of the scrambled image depends on the reverse Arnold transform that has the same cycle times with the Arnold transform. The recovering is Iossless and need not calculating the period of the Arnold transform. Finally, experimental results show the robustness of the method.
基金Project supported by the National Natural Science Foundation of China (Grant No 60472112) and the Foundation for the author of National Excellent Doctoral Dissertation of China (Grant No 200444).
文摘In recent years, the chaos based cryptographic algorithms have suggested some new and efficient ways to develop secure image encryption techniques. This paper proposes a new approach for image encryption based on a high-dimensional chaotic map. The new scheme employs the Cat map to shuffle the positions, then to confuse the relationship between the cipher-image and the plain-image using the high-dimensional Lorenz chaotic map preprocessed. The results of experimental, statistical analysis and key space analysis show that the proposed image encryption scheme provides an efficient and secure way for real-time image encryption and transmission.