This is a very timely review of body armour materials and systems since new test standards are currently being written, or reviewed, and new, innovative products released. Of greatest importance, however, is the recen...This is a very timely review of body armour materials and systems since new test standards are currently being written, or reviewed, and new, innovative products released. Of greatest importance, however, is the recent evolution, and maturity, of the Ultra High Molecular Weight Polyethylene fibres enabling a completely new style of system to evolve e a stackable system of Hard Armour Plates. The science of body armour materials is quickly reviewed with emphasis upon current understanding of relevant energy-absorbing mechanisms in fibres, fabrics, polymeric laminates and ceramics. The trend in ongoing developments in ballistic fibres is then reviewed, analysed and future projections offered. Weaknesses in some of the ceramic grades are highlighted as is the value of using cladding materials to improve the robustness, and multi-strike performance, of Hard Armour Plates. Finally, with the drive for lighter, and therefore smaller, soft armour systems for military personnel the challenges for armour designers are reported, and the importance of the relative size of the Hard Armour Plate to the Soft Armour Insert is strongly emphasised.展开更多
Industrial applications of aluminium and its alloys are restricted because of their poor tribological properties. Thermal spraying, laser surfacing, electron beam welding are the most widely used techniques to alter t...Industrial applications of aluminium and its alloys are restricted because of their poor tribological properties. Thermal spraying, laser surfacing, electron beam welding are the most widely used techniques to alter the surface morphology of base metal. Preliminary studies reveal that the coating and layering of aluminium alloys with ceramic particles enhance the ballistic resistance. Furthermore, among aluminium alloys,7075 aluminium alloy exhibits high strength which can be compared to that of steels and has profound applications in the designing of lightweight fortification structures and integrated protection systems. Having limitations such as poor bond integrity, formation of detrimental phases and interfacial reaction between reinforcement and substrate using fusion route to deposit hard particles paves the way to adopt friction stir processing for fabricating surface composites using different sizes of boron carbide particles as reinforcement on armour grade 7075 aluminium alloy as matrix in the present investigation. Wear and ballistic tests were carried out to assess the performance of friction stir processed AA7075 alloy. Significant improvement in wear resistance of friction stir processed surface composites is attributed to the change in wear mechanism from abrasion to adhesion. It has also been observed that the surface metal matrix composites have shown better ballistic resistance compared to the substrate AA7075 alloy. Addition of solid lubricant Mo S2 has reduced the depth of penetration of the projectile to half that of base metal AA7075 alloy. For the first time, the friction stir processing technique was successfully used to improve the wear and ballistic resistances of armour grade high strength AA7075 alloy.展开更多
Replica scaled impact experiments with unconfined ceramic targets have shown that the transition velocity,i.e.,the impact velocity at which interface defeat ceases and ceramic penetration occurs,decreased as the lengt...Replica scaled impact experiments with unconfined ceramic targets have shown that the transition velocity,i.e.,the impact velocity at which interface defeat ceases and ceramic penetration occurs,decreased as the length scale increased.A possible explanation of how this scale effect is related to the formation of a cone crack in the ceramic has been presented by the authors in an earlier paper.Here,the influence of confinement and prestress on cone cracking and transition velocity is investigated.The hypothesis is that prestress will suppress the formation and growth of the cone crack by lowering the driving stress.A set of impact experiments has been performed in which the transition velocity for four different levels of prestress has been determined.The transition velocities as a function of the level of confining prestress is compared to an analytical model for the influence of prestress on the formation and extension of the cone crack in the ceramic material.Both experiments and model indicate that prestress has a strong influence on the transition from interface defeat to penetration,although the model underestimates the influence of prestress.展开更多
The seaward slope of many breakwaters consists of thousands of interlocking units of rock or concrete comprising a massive granular system of large elements each weighing tens of tonnes. The dumped quarry materials in...The seaward slope of many breakwaters consists of thousands of interlocking units of rock or concrete comprising a massive granular system of large elements each weighing tens of tonnes. The dumped quarry materials in the core are protected by progressively coarser particulates. The outer armour layer of freely placed units is intended to both dissipate wave energy and remain structurally stable as strong flows are drawn in and out of the particulate core. Design guidance on the mass and shape of these units is based on empirical equations derived from scaled physical model tests. The main failure mode for armour layers exposed to severe storms is hydraulic instability where the armour units of concrete or rock are subjected to uplift and drag forces which can in turn lead to rocking, displacement and collisions sufficient to cause breakage of units. Recently invented armour unit designs making up such granular layered system owe much of their success to the desirable emergent properties of interlock and porosity and how these combine with individual unit structural strength and inertial mass. Fundamental understanding of the forces governing such wave-structure interaction remains poor. We use discrete element and combined finite-discrete element methods to model the granular solid skeleton of randomly packed units coupled to a CFD code which resolves the wave dynamics through an interface tracking technique. The CFD code exploits several methods including a compressive advection scheme, node movement, and general mesh optimization. We provide the engineering context and report progress towards the numerical modelling of instability in these massive granular systems.展开更多
The stability of single layer armour units on low crested and submerged breakwaters has been investigated in 2D hydraulic model tests. Armour unit movements including settlements, rocking and displacements have been d...The stability of single layer armour units on low crested and submerged breakwaters has been investigated in 2D hydraulic model tests. Armour unit movements including settlements, rocking and displacements have been determined. The effect of freeboard, packing density and wave steepness on the armour layer stability on crest, front and rear slope has been investigated. Armour units were mostly displaced in the most upper part of the seaward slope and at the seaward side of the crest. Damage on the crest was progressing towards the rear slope. About 40% to 50% larger armour units are required on the seaward slope and crest of low crested structures (as compared to conventional high crested breakwaters). About 35% larger armour units are required on the rear slope. Larger armour units are not required on submerged breakwaters if the water depth on the crest exceeds 40% of design wave height.展开更多
This paper is investigating the use of composite armour reinforced by nanomaterials, for the protection of light armoured(LAV) and medium armoured military vehicles(MAV), and the interaction between the composite mate...This paper is investigating the use of composite armour reinforced by nanomaterials, for the protection of light armoured(LAV) and medium armoured military vehicles(MAV), and the interaction between the composite materials and high-performance ballistic projectiles. Four armour materials, consisted of front hybrid fibre reinforced polymer cover layer, ceramic strike-face, fibre reinforced polymer intermediate layer and the metal matrix composite reinforced backplate, were manufactured and assembled by adhesive technology. The proposed laminated protection system is suitable for armoured ground vehicles;however, it could be used as armour on ground, air and naval platforms. The design of the protection system, including material selection and thickness, was elaborated depending on the performance requirements of Level 4 + STANAG 4569 military standard(projectile 14.5 mm × 114 mm API B32) and especially on a design philosophy which is analysed with the specifications. The backplate of this new composite is a hybrid material of Metal Matrix Composite(MMC) reinforced with carbon nanotubes(CNTs), manufactured with the use of powder metallurgy technique. The composite backplate material was morphologically, mechanically and chemically analysed. Results show that all plates are presenting high mechanical properties and ballistic characteristics, compared to commonly used armour plates. Real military ballistic tests according to AEP-STANAG 4569 were carried out for the total composite armour systems. After the ballistic tests, AA2024-CNT3 showed the best protection results, compared with the other plates(AA2024-CNT1 and AA2024-CNT2), with the projectile being unable to fully penetrate the composite plate.展开更多
We evaluate an adaptive optimisation methodology,Bayesian optimisation(BO),for designing a minimum weight explosive reactive armour(ERA)for protection against a surrogate medium calibre kinetic energy(KE)long rod proj...We evaluate an adaptive optimisation methodology,Bayesian optimisation(BO),for designing a minimum weight explosive reactive armour(ERA)for protection against a surrogate medium calibre kinetic energy(KE)long rod projectile and surrogate shaped charge(SC)warhead.We perform the optimisation using a conventional BO methodology and compare it with a conventional trial-and-error approach from a human expert.A third approach,utilising a novel human-machine teaming framework for BO is also evaluated.Data for the optimisation is generated using numerical simulations that are demonstrated to provide reasonable qualitative agreement with reference experiments.The human-machine teaming methodology is shown to identify the optimum ERA design in the fewest number of evaluations,outperforming both the stand-alone human and stand-alone BO methodologies.From a design space of almost 1800 configurations the human-machine teaming approach identifies the minimum weight ERA design in 10 samples.展开更多
Machine learning(ML) is well suited for the prediction of high-complexity,high-dimensional problems such as those encountered in terminal ballistics.We evaluate the performance of four popular ML-based regression mode...Machine learning(ML) is well suited for the prediction of high-complexity,high-dimensional problems such as those encountered in terminal ballistics.We evaluate the performance of four popular ML-based regression models,extreme gradient boosting(XGBoost),artificial neural network(ANN),support vector regression(SVR),and Gaussian process regression(GP),on two common terminal ballistics’ problems:(a)predicting the V50ballistic limit of monolithic metallic armour impacted by small and medium calibre projectiles and fragments,and(b) predicting the depth to which a projectile will penetrate a target of semi-infinite thickness.To achieve this we utilise two datasets,each consisting of approximately 1000samples,collated from public release sources.We demonstrate that all four model types provide similarly excellent agreement when interpolating within the training data and diverge when extrapolating outside this range.Although extrapolation is not advisable for ML-based regression models,for applications such as lethality/survivability analysis,such capability is required.To circumvent this,we implement expert knowledge and physics-based models via enforced monotonicity,as a Gaussian prior mean,and through a modified loss function.The physics-informed models demonstrate improved performance over both classical physics-based models and the basic ML regression models,providing an ability to accurately fit experimental data when it is available and then revert to the physics-based model when not.The resulting models demonstrate high levels of predictive accuracy over a very wide range of projectile types,target materials and thicknesses,and impact conditions significantly more diverse than that achievable from any existing analytical approach.Compared with numerical analysis tools such as finite element solvers the ML models run orders of magnitude faster.We provide some general guidelines throughout for the development,application,and reporting of ML models in terminal ballistics problems.展开更多
It has been proved that the construction of interconnected armour on superhydrophobic surface could significantly enhance the mechanical robustness.Here,a new kind of armour with frame/protrusion hybrid structure was ...It has been proved that the construction of interconnected armour on superhydrophobic surface could significantly enhance the mechanical robustness.Here,a new kind of armour with frame/protrusion hybrid structure was achieved by nanosecond laser technology.Then,this armoured superhydrophobic surface demonstrated excellent durability,which could withstand linear abrasion(~3 N press)800 cycles,water jet test(1.0 MPa pressure)40 times and 100℃treatment 18 days.Particularly,the armoured superhydrophobic sample shows outstanding anti-icing ability,which can speed up the supercooled water dropping(no adhesion within 2 h),increase the freezing delay time by~3 times and maintain low adhesion force(less than 35 kPa)after 30 icing/de-icing cycles.Further finite element analysis and theoretical modeling proved that the developed frame/protuberance hybrid structure could effectively enhance the durability.The relatively low surface accuracy in this study can significantly reduce processing cost,which provides a bright future for the practical application of armour superhydrophobic materials.展开更多
The ballistic performance,and behaviour,of an armour system is governed by two major sets of variables,geometrical and material.Of these,the consistency of performance,especially against small arms ammunition,will dep...The ballistic performance,and behaviour,of an armour system is governed by two major sets of variables,geometrical and material.Of these,the consistency of performance,especially against small arms ammunition,will depend upon the consistency of the properties of the constituent materials.In a body armour system for example,fibre diameter,areal density of woven fabric,and bulk density of ceramic are examples of critical parameters and monitoring such parameters will form the backbone of associated quality control procedures.What is often overlooked,because it can fall into the User’s domain,are the interfaces that exist between the various products;the carrier,the Soft Armour Insert(SAI),and the one or two hard armour plates(HAP1 and HAP2).This is especially true if the various products are sourced from different suppliers.展开更多
Insulated underground cables have the potential to reduce power outages, maintenance costs, and transmission losses compared to overhead lines.</span><span style="font-family:""> </span&g...Insulated underground cables have the potential to reduce power outages, maintenance costs, and transmission losses compared to overhead lines.</span><span style="font-family:""> </span><span style="font-family:""><span style="font-family:Verdana;">On the other hand, they are exposed to several risks and physical damages, since they are buried in the ground. Though the cables are armoured in order to provide mec</span><span style="font-family:Verdana;">hanical protection and achieve tensile strength, and also to provide effective conductance of earth fault currents.</span></span><span style="font-family:""> </span><span style="font-family:Verdana;">The main purpose of this paper is to introduce insulated underground cables, armouring process, and to analyze the induced currents in metallic parts such as sheath and armour </span><span style="font-family:Verdana;">that causeohmic losses which are categorized mainly in two groups as circulating current and eddy current. This paper presents a review on analytical techniques used to analyze the effect of magnetic fields, andcalculate the losses in </span><span style="font-family:Verdana;">the armour of the cables,</span><span style="font-family:""> </span><span style="font-family:Verdana;">besides providing the strategies and solutions used for armour loss reduction.展开更多
Present study focuses on the terminal penetration of tungsten heavy alloy(WHA) long rod penetrator impacted against armour steel at an impact velocity of 1600 m/s. The residual penetrator and armour steel target recov...Present study focuses on the terminal penetration of tungsten heavy alloy(WHA) long rod penetrator impacted against armour steel at an impact velocity of 1600 m/s. The residual penetrator and armour steel target recovered after the ballistic test have been characterized using optical microscope, scanning electron microscope(SEM) and electron probe micro analyzer(EPMA). Metallurgical changes in target steel and WHA remnant have been analysed. Large shear stresses and shear localization have resulted in local failure and formation of erosion products. Severe plastic deformation acts as precursor for formation of adiabatic shear band(ASB) induced cracks in target steel. Recovered WHA penetrator remnant also exhibits severe plastic deformation forming localized shear bands, ASB induced cracks and shock induced cracks.展开更多
Intermetallic aluminide compounds possess several potential advantages compared to alloyed steels,like enhanced oxidation resistance,lower density and the omittance of critical raw materials.Iron aluminides,compared t...Intermetallic aluminide compounds possess several potential advantages compared to alloyed steels,like enhanced oxidation resistance,lower density and the omittance of critical raw materials.Iron aluminides,compared to other transition metal-aluminides of TM_(3)-Al type,although having a higher density compared to titan-aluminides,have a lower density compared to nickel-aluminides,but also a higher ductility than both alternatives,making this material potentially effective in ballistic protection application.Density-wise,this material may be a worthy alternative to armour steels,which was the aim of this study.Two materials,Fe_(3)Al intermetallic compound(F3A-C)and Armox 500 armour steel were ballistically tested against tungsten-carbide(WC)armour-piercing ammunition,in accordance with STANAG 4569.After ballistic testing,microhardness and metallographic testing were performed,revealing differences in strain hardening,crack propagation mode and exit hole morphology.F3A-C ballistic resistance is similar to that of armour steel,in spite of the lower tensile and impact mechanical properties,relying on a considerably higher strain hardening rate,thermal properties and a lower density.展开更多
Reactive armour is a very efficient add-on armour against shaped charge threats.Explosive reactive armour consists of one or several plates that are accelerated by an explosive.Similar but less violent acceleration of...Reactive armour is a very efficient add-on armour against shaped charge threats.Explosive reactive armour consists of one or several plates that are accelerated by an explosive.Similar but less violent acceleration of plates can also be achieved in a completely inert reactive armour.To be efficient against elongated jets,the motion of the plates needs to be inclined against the jet such that a sliding contact between the jet and the plates is established.This sliding contact causes a deflection and thinning of the jet.Under certain circumstances,the contact will become unstable,leading to severe disturbances on the jet.These disturbances will drastically reduce the jet penetration performance and it is therefore of interest to study the conditions that leads to an unstable contact.Previous studies on the interaction between shaped charge jets and flyer plates have shown that it is mainly the forward moving plate in an explosive reactive armour that is effective in disturbing the jet.This is usually attributed to the higher plate-to-jet mass flux ratio involved in the collision of the forward moving plate compared to the backward moving plate.For slow moving plates,as occurs in inert reactive armour,the difference in mass flux for the forward and backward moving plate is much lesser,and it is therefore of interest to study if other factors than the mass flux influences on the protection capability.In this work,experiments have been performed where a plate is accelerated along its length,interacting with a shaped charge jet that is fired at an oblique angle to the plate’s normal,either against or along the plate’s velocity.The arrangement corresponds to a jet interacting with a flyer plate from a reactive armour,with the exception that the collision velocity is the same for both types of obliquities in these experiments.The experiments show that disturbances on the jet are different in the two cases even though the collision velocities are the same.Numerical simulations of the interaction support the observatio展开更多
The ballistic resistance and failure pattern of a bi-layer alumina 99.5%-aluminium alloy 1100-H12 target against steel 4340 ogival nosed projectile has been explored in the present experimental cum numerical study.In ...The ballistic resistance and failure pattern of a bi-layer alumina 99.5%-aluminium alloy 1100-H12 target against steel 4340 ogival nosed projectile has been explored in the present experimental cum numerical study.In the experimental investigation,damage induced in the ceramic layer has been quantified in terms of number of cracks developed and failure zone dimensions.The resultant damage in the backing layer has been studied with variation in the bulge and perforation hole in the backing layer with the varying incidence velocity.The discussion of the experimental results has been further followed by three dimensional finite element computations using ABAQUS/Explicit finite code to investigate the behaviour of different types of bi-layer targets under multi-hit projectile impact.The JH-2 constitutive model has been used to reproduce the behaviour of alumina 99.5%and JC constitutive model has been used for steel 4340 and aluminium alloy 1100-H12.The total energy dissipation has been noted to be of lesser magnitude in case of sub-sequential impact in comparison to simultaneous impact of two projectiles.The distance between the impact points of two projectiles also effected the ballistic resistance of bi-layer target.The ballistic resistance of single tile ceramic front layer and four tile ceramic of equivalent area found to be dependent upon the boundary conditions provided to the target.展开更多
文摘This is a very timely review of body armour materials and systems since new test standards are currently being written, or reviewed, and new, innovative products released. Of greatest importance, however, is the recent evolution, and maturity, of the Ultra High Molecular Weight Polyethylene fibres enabling a completely new style of system to evolve e a stackable system of Hard Armour Plates. The science of body armour materials is quickly reviewed with emphasis upon current understanding of relevant energy-absorbing mechanisms in fibres, fabrics, polymeric laminates and ceramics. The trend in ongoing developments in ballistic fibres is then reviewed, analysed and future projections offered. Weaknesses in some of the ceramic grades are highlighted as is the value of using cladding materials to improve the robustness, and multi-strike performance, of Hard Armour Plates. Finally, with the drive for lighter, and therefore smaller, soft armour systems for military personnel the challenges for armour designers are reported, and the importance of the relative size of the Hard Armour Plate to the Soft Armour Insert is strongly emphasised.
基金Financial assistance from Armament Research Board, New Delhi, India
文摘Industrial applications of aluminium and its alloys are restricted because of their poor tribological properties. Thermal spraying, laser surfacing, electron beam welding are the most widely used techniques to alter the surface morphology of base metal. Preliminary studies reveal that the coating and layering of aluminium alloys with ceramic particles enhance the ballistic resistance. Furthermore, among aluminium alloys,7075 aluminium alloy exhibits high strength which can be compared to that of steels and has profound applications in the designing of lightweight fortification structures and integrated protection systems. Having limitations such as poor bond integrity, formation of detrimental phases and interfacial reaction between reinforcement and substrate using fusion route to deposit hard particles paves the way to adopt friction stir processing for fabricating surface composites using different sizes of boron carbide particles as reinforcement on armour grade 7075 aluminium alloy as matrix in the present investigation. Wear and ballistic tests were carried out to assess the performance of friction stir processed AA7075 alloy. Significant improvement in wear resistance of friction stir processed surface composites is attributed to the change in wear mechanism from abrasion to adhesion. It has also been observed that the surface metal matrix composites have shown better ballistic resistance compared to the substrate AA7075 alloy. Addition of solid lubricant Mo S2 has reduced the depth of penetration of the projectile to half that of base metal AA7075 alloy. For the first time, the friction stir processing technique was successfully used to improve the wear and ballistic resistances of armour grade high strength AA7075 alloy.
基金funded by the Swedish Armed Forces and by the Army Research Laboratory through US Naval Regional Contracting Centre,Contract No.W911NF0810271
文摘Replica scaled impact experiments with unconfined ceramic targets have shown that the transition velocity,i.e.,the impact velocity at which interface defeat ceases and ceramic penetration occurs,decreased as the length scale increased.A possible explanation of how this scale effect is related to the formation of a cone crack in the ceramic has been presented by the authors in an earlier paper.Here,the influence of confinement and prestress on cone cracking and transition velocity is investigated.The hypothesis is that prestress will suppress the formation and growth of the cone crack by lowering the driving stress.A set of impact experiments has been performed in which the transition velocity for four different levels of prestress has been determined.The transition velocities as a function of the level of confining prestress is compared to an analytical model for the influence of prestress on the formation and extension of the cone crack in the ceramic material.Both experiments and model indicate that prestress has a strong influence on the transition from interface defeat to penetration,although the model underestimates the influence of prestress.
基金funding from EPSRC under grants GR/S42699/01 and GR/S42705/01
文摘The seaward slope of many breakwaters consists of thousands of interlocking units of rock or concrete comprising a massive granular system of large elements each weighing tens of tonnes. The dumped quarry materials in the core are protected by progressively coarser particulates. The outer armour layer of freely placed units is intended to both dissipate wave energy and remain structurally stable as strong flows are drawn in and out of the particulate core. Design guidance on the mass and shape of these units is based on empirical equations derived from scaled physical model tests. The main failure mode for armour layers exposed to severe storms is hydraulic instability where the armour units of concrete or rock are subjected to uplift and drag forces which can in turn lead to rocking, displacement and collisions sufficient to cause breakage of units. Recently invented armour unit designs making up such granular layered system owe much of their success to the desirable emergent properties of interlock and porosity and how these combine with individual unit structural strength and inertial mass. Fundamental understanding of the forces governing such wave-structure interaction remains poor. We use discrete element and combined finite-discrete element methods to model the granular solid skeleton of randomly packed units coupled to a CFD code which resolves the wave dynamics through an interface tracking technique. The CFD code exploits several methods including a compressive advection scheme, node movement, and general mesh optimization. We provide the engineering context and report progress towards the numerical modelling of instability in these massive granular systems.
文摘The stability of single layer armour units on low crested and submerged breakwaters has been investigated in 2D hydraulic model tests. Armour unit movements including settlements, rocking and displacements have been determined. The effect of freeboard, packing density and wave steepness on the armour layer stability on crest, front and rear slope has been investigated. Armour units were mostly displaced in the most upper part of the seaward slope and at the seaward side of the crest. Damage on the crest was progressing towards the rear slope. About 40% to 50% larger armour units are required on the seaward slope and crest of low crested structures (as compared to conventional high crested breakwaters). About 35% larger armour units are required on the rear slope. Larger armour units are not required on submerged breakwaters if the water depth on the crest exceeds 40% of design wave height.
基金the Research and Development department of EODH SA and has been co-financed by the European Regional Development Fund of the European Union and Greek national funds through the Operational Program Competitiveness,Entrepreneurship and Innovation,under the call RESEARCH-CREATE-INNOVATE(project code:T1EDK-04429).
文摘This paper is investigating the use of composite armour reinforced by nanomaterials, for the protection of light armoured(LAV) and medium armoured military vehicles(MAV), and the interaction between the composite materials and high-performance ballistic projectiles. Four armour materials, consisted of front hybrid fibre reinforced polymer cover layer, ceramic strike-face, fibre reinforced polymer intermediate layer and the metal matrix composite reinforced backplate, were manufactured and assembled by adhesive technology. The proposed laminated protection system is suitable for armoured ground vehicles;however, it could be used as armour on ground, air and naval platforms. The design of the protection system, including material selection and thickness, was elaborated depending on the performance requirements of Level 4 + STANAG 4569 military standard(projectile 14.5 mm × 114 mm API B32) and especially on a design philosophy which is analysed with the specifications. The backplate of this new composite is a hybrid material of Metal Matrix Composite(MMC) reinforced with carbon nanotubes(CNTs), manufactured with the use of powder metallurgy technique. The composite backplate material was morphologically, mechanically and chemically analysed. Results show that all plates are presenting high mechanical properties and ballistic characteristics, compared to commonly used armour plates. Real military ballistic tests according to AEP-STANAG 4569 were carried out for the total composite armour systems. After the ballistic tests, AA2024-CNT3 showed the best protection results, compared with the other plates(AA2024-CNT1 and AA2024-CNT2), with the projectile being unable to fully penetrate the composite plate.
文摘We evaluate an adaptive optimisation methodology,Bayesian optimisation(BO),for designing a minimum weight explosive reactive armour(ERA)for protection against a surrogate medium calibre kinetic energy(KE)long rod projectile and surrogate shaped charge(SC)warhead.We perform the optimisation using a conventional BO methodology and compare it with a conventional trial-and-error approach from a human expert.A third approach,utilising a novel human-machine teaming framework for BO is also evaluated.Data for the optimisation is generated using numerical simulations that are demonstrated to provide reasonable qualitative agreement with reference experiments.The human-machine teaming methodology is shown to identify the optimum ERA design in the fewest number of evaluations,outperforming both the stand-alone human and stand-alone BO methodologies.From a design space of almost 1800 configurations the human-machine teaming approach identifies the minimum weight ERA design in 10 samples.
文摘Machine learning(ML) is well suited for the prediction of high-complexity,high-dimensional problems such as those encountered in terminal ballistics.We evaluate the performance of four popular ML-based regression models,extreme gradient boosting(XGBoost),artificial neural network(ANN),support vector regression(SVR),and Gaussian process regression(GP),on two common terminal ballistics’ problems:(a)predicting the V50ballistic limit of monolithic metallic armour impacted by small and medium calibre projectiles and fragments,and(b) predicting the depth to which a projectile will penetrate a target of semi-infinite thickness.To achieve this we utilise two datasets,each consisting of approximately 1000samples,collated from public release sources.We demonstrate that all four model types provide similarly excellent agreement when interpolating within the training data and diverge when extrapolating outside this range.Although extrapolation is not advisable for ML-based regression models,for applications such as lethality/survivability analysis,such capability is required.To circumvent this,we implement expert knowledge and physics-based models via enforced monotonicity,as a Gaussian prior mean,and through a modified loss function.The physics-informed models demonstrate improved performance over both classical physics-based models and the basic ML regression models,providing an ability to accurately fit experimental data when it is available and then revert to the physics-based model when not.The resulting models demonstrate high levels of predictive accuracy over a very wide range of projectile types,target materials and thicknesses,and impact conditions significantly more diverse than that achievable from any existing analytical approach.Compared with numerical analysis tools such as finite element solvers the ML models run orders of magnitude faster.We provide some general guidelines throughout for the development,application,and reporting of ML models in terminal ballistics problems.
基金supported by Beijing Nature Science Foundation(3232054)National Nature Science Foundation of China(51977079)+4 种基金Key Laboratory of Icing and Anti/De-icing of CARDC(Grant No.IADL 20210401)the Central Guidance on Local Science and Technology Development Fund of Hebei Province(226Z1204G)the Top Young Innovative Talents of Colleges and Universities of Higher Learning Institutions of Hebei(BJ2021095)Youth Elite Scientists Sponsorship Program by Chinese Society for Electrical Engineering(CSEE-YESS-2017002)the Fundamental Research Funds for the Central Universities(2020MS115).
文摘It has been proved that the construction of interconnected armour on superhydrophobic surface could significantly enhance the mechanical robustness.Here,a new kind of armour with frame/protrusion hybrid structure was achieved by nanosecond laser technology.Then,this armoured superhydrophobic surface demonstrated excellent durability,which could withstand linear abrasion(~3 N press)800 cycles,water jet test(1.0 MPa pressure)40 times and 100℃treatment 18 days.Particularly,the armoured superhydrophobic sample shows outstanding anti-icing ability,which can speed up the supercooled water dropping(no adhesion within 2 h),increase the freezing delay time by~3 times and maintain low adhesion force(less than 35 kPa)after 30 icing/de-icing cycles.Further finite element analysis and theoretical modeling proved that the developed frame/protuberance hybrid structure could effectively enhance the durability.The relatively low surface accuracy in this study can significantly reduce processing cost,which provides a bright future for the practical application of armour superhydrophobic materials.
文摘The ballistic performance,and behaviour,of an armour system is governed by two major sets of variables,geometrical and material.Of these,the consistency of performance,especially against small arms ammunition,will depend upon the consistency of the properties of the constituent materials.In a body armour system for example,fibre diameter,areal density of woven fabric,and bulk density of ceramic are examples of critical parameters and monitoring such parameters will form the backbone of associated quality control procedures.What is often overlooked,because it can fall into the User’s domain,are the interfaces that exist between the various products;the carrier,the Soft Armour Insert(SAI),and the one or two hard armour plates(HAP1 and HAP2).This is especially true if the various products are sourced from different suppliers.
文摘Insulated underground cables have the potential to reduce power outages, maintenance costs, and transmission losses compared to overhead lines.</span><span style="font-family:""> </span><span style="font-family:""><span style="font-family:Verdana;">On the other hand, they are exposed to several risks and physical damages, since they are buried in the ground. Though the cables are armoured in order to provide mec</span><span style="font-family:Verdana;">hanical protection and achieve tensile strength, and also to provide effective conductance of earth fault currents.</span></span><span style="font-family:""> </span><span style="font-family:Verdana;">The main purpose of this paper is to introduce insulated underground cables, armouring process, and to analyze the induced currents in metallic parts such as sheath and armour </span><span style="font-family:Verdana;">that causeohmic losses which are categorized mainly in two groups as circulating current and eddy current. This paper presents a review on analytical techniques used to analyze the effect of magnetic fields, andcalculate the losses in </span><span style="font-family:Verdana;">the armour of the cables,</span><span style="font-family:""> </span><span style="font-family:Verdana;">besides providing the strategies and solutions used for armour loss reduction.
基金Defence Research Development Organization(DRDO)for financial support to carry out this work at Defence Metallurgical Research Laboratory
文摘Present study focuses on the terminal penetration of tungsten heavy alloy(WHA) long rod penetrator impacted against armour steel at an impact velocity of 1600 m/s. The residual penetrator and armour steel target recovered after the ballistic test have been characterized using optical microscope, scanning electron microscope(SEM) and electron probe micro analyzer(EPMA). Metallurgical changes in target steel and WHA remnant have been analysed. Large shear stresses and shear localization have resulted in local failure and formation of erosion products. Severe plastic deformation acts as precursor for formation of adiabatic shear band(ASB) induced cracks in target steel. Recovered WHA penetrator remnant also exhibits severe plastic deformation forming localized shear bands, ASB induced cracks and shock induced cracks.
基金support by the project entitled"Interdisciplinarity in Materials Science and Joining Technologies"from the Department of Production Engineering,Faculty of Technical Sciences Novi Sad,Serbia。
文摘Intermetallic aluminide compounds possess several potential advantages compared to alloyed steels,like enhanced oxidation resistance,lower density and the omittance of critical raw materials.Iron aluminides,compared to other transition metal-aluminides of TM_(3)-Al type,although having a higher density compared to titan-aluminides,have a lower density compared to nickel-aluminides,but also a higher ductility than both alternatives,making this material potentially effective in ballistic protection application.Density-wise,this material may be a worthy alternative to armour steels,which was the aim of this study.Two materials,Fe_(3)Al intermetallic compound(F3A-C)and Armox 500 armour steel were ballistically tested against tungsten-carbide(WC)armour-piercing ammunition,in accordance with STANAG 4569.After ballistic testing,microhardness and metallographic testing were performed,revealing differences in strain hardening,crack propagation mode and exit hole morphology.F3A-C ballistic resistance is similar to that of armour steel,in spite of the lower tensile and impact mechanical properties,relying on a considerably higher strain hardening rate,thermal properties and a lower density.
基金funded by the Swedish Armed Forces under Contract No AT.9220620。
文摘Reactive armour is a very efficient add-on armour against shaped charge threats.Explosive reactive armour consists of one or several plates that are accelerated by an explosive.Similar but less violent acceleration of plates can also be achieved in a completely inert reactive armour.To be efficient against elongated jets,the motion of the plates needs to be inclined against the jet such that a sliding contact between the jet and the plates is established.This sliding contact causes a deflection and thinning of the jet.Under certain circumstances,the contact will become unstable,leading to severe disturbances on the jet.These disturbances will drastically reduce the jet penetration performance and it is therefore of interest to study the conditions that leads to an unstable contact.Previous studies on the interaction between shaped charge jets and flyer plates have shown that it is mainly the forward moving plate in an explosive reactive armour that is effective in disturbing the jet.This is usually attributed to the higher plate-to-jet mass flux ratio involved in the collision of the forward moving plate compared to the backward moving plate.For slow moving plates,as occurs in inert reactive armour,the difference in mass flux for the forward and backward moving plate is much lesser,and it is therefore of interest to study if other factors than the mass flux influences on the protection capability.In this work,experiments have been performed where a plate is accelerated along its length,interacting with a shaped charge jet that is fired at an oblique angle to the plate’s normal,either against or along the plate’s velocity.The arrangement corresponds to a jet interacting with a flyer plate from a reactive armour,with the exception that the collision velocity is the same for both types of obliquities in these experiments.The experiments show that disturbances on the jet are different in the two cases even though the collision velocities are the same.Numerical simulations of the interaction support the observatio
文摘The ballistic resistance and failure pattern of a bi-layer alumina 99.5%-aluminium alloy 1100-H12 target against steel 4340 ogival nosed projectile has been explored in the present experimental cum numerical study.In the experimental investigation,damage induced in the ceramic layer has been quantified in terms of number of cracks developed and failure zone dimensions.The resultant damage in the backing layer has been studied with variation in the bulge and perforation hole in the backing layer with the varying incidence velocity.The discussion of the experimental results has been further followed by three dimensional finite element computations using ABAQUS/Explicit finite code to investigate the behaviour of different types of bi-layer targets under multi-hit projectile impact.The JH-2 constitutive model has been used to reproduce the behaviour of alumina 99.5%and JC constitutive model has been used for steel 4340 and aluminium alloy 1100-H12.The total energy dissipation has been noted to be of lesser magnitude in case of sub-sequential impact in comparison to simultaneous impact of two projectiles.The distance between the impact points of two projectiles also effected the ballistic resistance of bi-layer target.The ballistic resistance of single tile ceramic front layer and four tile ceramic of equivalent area found to be dependent upon the boundary conditions provided to the target.