Non-point source water pollution generated by agricultural production is considered a major environmental issue in the Three Gorges Reservoir Area (TGRA) of China. The Annualised Agricultural Non-Point Source Pollut...Non-point source water pollution generated by agricultural production is considered a major environmental issue in the Three Gorges Reservoir Area (TGRA) of China. The Annualised Agricultural Non-Point Source Pollution (AnnAGNPS) model was selected to assess the impact of the application of various management treats, including seven crops, five fertilizer levels and three-group management practice scenarios, on water quality from Heigou River Watershed in TGRA. The scenario subsets include conservation tillage practice (CTP), conservation reserve program (CRP) and conversion of cropland into forestland program (CCFP). Results indicated that tea can not be replaced by other crops because comparatively tea resulted in a higher sediment yield. CTP with no-tillage was more effective to reduce sediment yield, but could increased nutrient loss. CRP reduced sediment yield significantly, but slightly benefited on nutrient loss. CCFP reduced not only sediment yield but also the nutrient loss significantly. The conversion of cropland with a slope greater than 10° into forestland was found to be the best scenario as the sediment yield export is less than 5 tons/ha and nutrient loss is within the permissible limit.展开更多
叙述了一种新的制取高比表面积钽(铌)粉末的方法,即用至少一种选自Mg, Ca, Sr, Ba 和 Ce的碱土金属卤化物加碱金属还原氧化钽(铌)的方法。以氯化钙加钠还原氧化钽为例,得到了比表面积大,化学杂质低的钽粉。这种原生粒子达到纳米级的钽...叙述了一种新的制取高比表面积钽(铌)粉末的方法,即用至少一种选自Mg, Ca, Sr, Ba 和 Ce的碱土金属卤化物加碱金属还原氧化钽(铌)的方法。以氯化钙加钠还原氧化钽为例,得到了比表面积大,化学杂质低的钽粉。这种原生粒子达到纳米级的钽粉原粉经过热团化、降氧等后续处理得到电容器用团化钽粉。对该钽粉进行了湿式电性测试。展开更多
To process optimization and improve the degree of reduction, a two-step experiment was designed. The experiment was carried out in the micro-fluidized bed. The reactor in the micro-fluidized bed is operated as a diffe...To process optimization and improve the degree of reduction, a two-step experiment was designed. The experiment was carried out in the micro-fluidized bed. The reactor in the micro-fluidized bed is operated as a differential reactor to ensure an equal temperature and residence time with the reactor volume. The experiment used Brazilian iron ore and reducing gas of CO. The operating temperature was 400 to 800 ℃ and the residence time was between 10 and 60 min. In correspondence with experiment, microscopic technique was applied too. The test shows that temperature and residence time of the pre-reduction stage have an important effect on the degree of reduction. By using two-step experiment, the maximum value of reduction degree increases by 44.1% compared with the maximum value of traditional reduction experiment. Microscopic analysis shows that the specific surface area, surface morphology and texture of reduced iron ore after pre-reduction stage have an important effect on the degree of final reduction too.展开更多
The electrochemical reduction of CO2(CO2 RR) can substantially contribute to the production of useful chemicals and reduction of global CO2 emissions. Herein, we presented N and S dual-doped high-surface-area carbon m...The electrochemical reduction of CO2(CO2 RR) can substantially contribute to the production of useful chemicals and reduction of global CO2 emissions. Herein, we presented N and S dual-doped high-surface-area carbon materials(SZ-HCN) as CO2 RR catalysts. N and S were doped by one-step pyrolysis of a N-containing polymer and S powder. ZnCl2 was applied as a volatile porogen to prepare porous SZ-HCN. SZ-HCN with a high specific surface area(1510 m2 g–1) exhibited efficient electrocatalytic activity and selectivity for CO2 RR. Electrochemical measurements demonstrated that SZ-HCN showed excellent catalytic performance for CO2-to-CO reduction with a high CO Faradaic efficiency(~93%) at-0.6 V. Furthermore, SZ-HCN offered a stable current density and high CO selectivity over at least 20 h continuous operation, revealing remarkable electrocatalytic durability. The experimental results and density functional theory calculations indicated that N and S dual-doped carbon materials required lower Gibbs free energy to form the COOH* intermediate than that for single-N-doped carbon for CO2-to-CO reduction, thereby enhancing CO2 RR activity.展开更多
基金supported by the 11th-Five Year Scientific Support Program of China (No.2006BAD03A13,2006BAD03A07)
文摘Non-point source water pollution generated by agricultural production is considered a major environmental issue in the Three Gorges Reservoir Area (TGRA) of China. The Annualised Agricultural Non-Point Source Pollution (AnnAGNPS) model was selected to assess the impact of the application of various management treats, including seven crops, five fertilizer levels and three-group management practice scenarios, on water quality from Heigou River Watershed in TGRA. The scenario subsets include conservation tillage practice (CTP), conservation reserve program (CRP) and conversion of cropland into forestland program (CCFP). Results indicated that tea can not be replaced by other crops because comparatively tea resulted in a higher sediment yield. CTP with no-tillage was more effective to reduce sediment yield, but could increased nutrient loss. CRP reduced sediment yield significantly, but slightly benefited on nutrient loss. CCFP reduced not only sediment yield but also the nutrient loss significantly. The conversion of cropland with a slope greater than 10° into forestland was found to be the best scenario as the sediment yield export is less than 5 tons/ha and nutrient loss is within the permissible limit.
文摘叙述了一种新的制取高比表面积钽(铌)粉末的方法,即用至少一种选自Mg, Ca, Sr, Ba 和 Ce的碱土金属卤化物加碱金属还原氧化钽(铌)的方法。以氯化钙加钠还原氧化钽为例,得到了比表面积大,化学杂质低的钽粉。这种原生粒子达到纳米级的钽粉原粉经过热团化、降氧等后续处理得到电容器用团化钽粉。对该钽粉进行了湿式电性测试。
基金Item Sponsored by National Natural Science Foundation of China(50834007)
文摘To process optimization and improve the degree of reduction, a two-step experiment was designed. The experiment was carried out in the micro-fluidized bed. The reactor in the micro-fluidized bed is operated as a differential reactor to ensure an equal temperature and residence time with the reactor volume. The experiment used Brazilian iron ore and reducing gas of CO. The operating temperature was 400 to 800 ℃ and the residence time was between 10 and 60 min. In correspondence with experiment, microscopic technique was applied too. The test shows that temperature and residence time of the pre-reduction stage have an important effect on the degree of reduction. By using two-step experiment, the maximum value of reduction degree increases by 44.1% compared with the maximum value of traditional reduction experiment. Microscopic analysis shows that the specific surface area, surface morphology and texture of reduced iron ore after pre-reduction stage have an important effect on the degree of final reduction too.
文摘The electrochemical reduction of CO2(CO2 RR) can substantially contribute to the production of useful chemicals and reduction of global CO2 emissions. Herein, we presented N and S dual-doped high-surface-area carbon materials(SZ-HCN) as CO2 RR catalysts. N and S were doped by one-step pyrolysis of a N-containing polymer and S powder. ZnCl2 was applied as a volatile porogen to prepare porous SZ-HCN. SZ-HCN with a high specific surface area(1510 m2 g–1) exhibited efficient electrocatalytic activity and selectivity for CO2 RR. Electrochemical measurements demonstrated that SZ-HCN showed excellent catalytic performance for CO2-to-CO reduction with a high CO Faradaic efficiency(~93%) at-0.6 V. Furthermore, SZ-HCN offered a stable current density and high CO selectivity over at least 20 h continuous operation, revealing remarkable electrocatalytic durability. The experimental results and density functional theory calculations indicated that N and S dual-doped carbon materials required lower Gibbs free energy to form the COOH* intermediate than that for single-N-doped carbon for CO2-to-CO reduction, thereby enhancing CO2 RR activity.