In the non-uniform stress field, the surrounding rock plastic zone of the circular roadway shows different shapes under the different confining pressure conditions. Based on the boundary shape characteristics of the p...In the non-uniform stress field, the surrounding rock plastic zone of the circular roadway shows different shapes under the different confining pressure conditions. Based on the boundary shape characteristics of the plastic zone, the characteristic radii of the plastic zone were proposed, namely the horizontal,longitudinal and medial axis radii, which could reflect the plastic zone shapes characteristics and classify the sizes of the key parts. On the theoretical basis of elastic-plastic mechanics, analytical solutions for the characteristic radii were obtained by theoretical deduction, and the relationships between the characteristic radii and key influencing factors were analyzed. Finally, the evaluation criterion of the circular roadway surrounding rock plastic zone shapes, evaluation criterion of the location of potential hazards caused by the roadway surrounding rock and evaluation critical points of roadway dynamic disasters based on characteristic radii were proposed. This work could provide a theoretical basis for stability analysis of the surrounding rock, support design, and guide the prevention and control of dynamic roadway disasters.展开更多
基金supported by the National Natural Science Foundation of China (Grant No. 51234006)the National Key Research and Development Program of China (Grant No. 2016YFC0600708)
文摘In the non-uniform stress field, the surrounding rock plastic zone of the circular roadway shows different shapes under the different confining pressure conditions. Based on the boundary shape characteristics of the plastic zone, the characteristic radii of the plastic zone were proposed, namely the horizontal,longitudinal and medial axis radii, which could reflect the plastic zone shapes characteristics and classify the sizes of the key parts. On the theoretical basis of elastic-plastic mechanics, analytical solutions for the characteristic radii were obtained by theoretical deduction, and the relationships between the characteristic radii and key influencing factors were analyzed. Finally, the evaluation criterion of the circular roadway surrounding rock plastic zone shapes, evaluation criterion of the location of potential hazards caused by the roadway surrounding rock and evaluation critical points of roadway dynamic disasters based on characteristic radii were proposed. This work could provide a theoretical basis for stability analysis of the surrounding rock, support design, and guide the prevention and control of dynamic roadway disasters.