This paper addresses the stability problem for a class of switched nonlinear time varying delay systems modeled by delay differential equations. By transforming the system representation under the arrow form and using...This paper addresses the stability problem for a class of switched nonlinear time varying delay systems modeled by delay differential equations. By transforming the system representation under the arrow form and using a new constructed Lyapunov function,the aggregation techniques,the Borne-Gentina practical stability criterion associated with the properties, new delay-independent stability conditions of the considered systems are established. Compared with the existing results in this area, the obtained result is explicit, simple to use and allows us to avoid the problem of searching a common Lyapunov function. Finally, an example is provided, with numerical simulations,to demonstrate the effectiveness of the proposed method.展开更多
The stabilization problem for the Schr?dinger equation with an input time delay is considered from the view of system equivalence.First,a linear transform from the original system into an exponentially stable system w...The stabilization problem for the Schr?dinger equation with an input time delay is considered from the view of system equivalence.First,a linear transform from the original system into an exponentially stable system with arbitrary decay rate,also called"target system",is introduced.The linear transform is constructed via a kind of Volterra-type integration with singular kernels functions.As a result,a feedback control law for the original system is obtained.Secondly,a linear transform from the target system into the original closed-loop system is derived.Finally,the exponential stability with arbitrary decay rate of the closed-loop system is obtained through the established equivalence between the original closed-loop system and the target one.The authors conclude this work with some numerical simulations giving support to the results obtained in this paper.展开更多
Zero placement method in the frequency domain is utilized to design robust multi-hump EI optimal arbitrary time-delay filter (OATF) by placing two or more filter zeros near the system poles. A total insensitive OATF...Zero placement method in the frequency domain is utilized to design robust multi-hump EI optimal arbitrary time-delay filter (OATF) by placing two or more filter zeros near the system poles. A total insensitive OATF can be also achieved if the problem of insensitivity to damping errors is considered. This design strategy is easier to derive and implement. Applications in the anti-swing control of overhead cranes verify the fine performance of this strategy. A better suppression of the load vibrations is obtained using the proposed new OATF, which is more robust to the variation of the cable length.展开更多
文摘This paper addresses the stability problem for a class of switched nonlinear time varying delay systems modeled by delay differential equations. By transforming the system representation under the arrow form and using a new constructed Lyapunov function,the aggregation techniques,the Borne-Gentina practical stability criterion associated with the properties, new delay-independent stability conditions of the considered systems are established. Compared with the existing results in this area, the obtained result is explicit, simple to use and allows us to avoid the problem of searching a common Lyapunov function. Finally, an example is provided, with numerical simulations,to demonstrate the effectiveness of the proposed method.
基金supported by the Doctoral Scientific Research Foundation of Henan Normal University under Grant No.qd18088the Natural Science Foundation of China under Grant No.61773277the Central University Basic Scientific Research Project of Civil Aviation University of China under Grant No.3122019140。
文摘The stabilization problem for the Schr?dinger equation with an input time delay is considered from the view of system equivalence.First,a linear transform from the original system into an exponentially stable system with arbitrary decay rate,also called"target system",is introduced.The linear transform is constructed via a kind of Volterra-type integration with singular kernels functions.As a result,a feedback control law for the original system is obtained.Secondly,a linear transform from the target system into the original closed-loop system is derived.Finally,the exponential stability with arbitrary decay rate of the closed-loop system is obtained through the established equivalence between the original closed-loop system and the target one.The authors conclude this work with some numerical simulations giving support to the results obtained in this paper.
基金This project is supported by National Hi-tech Research and Development Program of China (863 Program, No. 2002AA412010).
文摘Zero placement method in the frequency domain is utilized to design robust multi-hump EI optimal arbitrary time-delay filter (OATF) by placing two or more filter zeros near the system poles. A total insensitive OATF can be also achieved if the problem of insensitivity to damping errors is considered. This design strategy is easier to derive and implement. Applications in the anti-swing control of overhead cranes verify the fine performance of this strategy. A better suppression of the load vibrations is obtained using the proposed new OATF, which is more robust to the variation of the cable length.