Based on particle approach and tidal flow model this article studies the behavior of the oil slick on the water surface in the Huangpu River, a tidal waterway in Shanghai. In order to track the oil slick motion, a two...Based on particle approach and tidal flow model this article studies the behavior of the oil slick on the water surface in the Huangpu River, a tidal waterway in Shanghai. In order to track the oil slick motion, a two-dimensional oil trajectory model is used. The dynamical properties of spilled oil characterized by advection, oil spreading and turbulent diffusion are considered in the model. The simulation results consistent with the flume experimental data show that the model is applicable. Both simulation and experiment illustrate that the tidal flow has a great influence on the oil slick motion. The calculated results can be used as a reference for the response to oil spill accidents in rivers.展开更多
An objective prediction approach to the 6 h- 144 h track and intensity of tropical cyclones over the northwestern Pacific is proposed. On the basis of both analog deviation technique and completed historical sample cu...An objective prediction approach to the 6 h- 144 h track and intensity of tropical cyclones over the northwestern Pacific is proposed. On the basis of both analog deviation technique and completed historical sample curve library, the track or intensity prediction for each forecast period are determined respectively through the optimum weighted superposition of displacement or intensity change of the cases, with different number and weighted coefficient corresponding to minimal analog deviation, from different tropical cyclone or different stage of the same cyclone. so that the prediction results for both forecast period and entire process are optimal. The verification suggests that the approach exhibits better forecast performance than other previous forecast methods by having remarkable decreasing forecast errors in short- and medium-range forecast of both track and intensity,and that the approach can also be used to predict effectively the decay process of tropical cyclone and is able to predict anomalous track and tropical depression.展开更多
Railway transitions experience differential movements due to differences in track system stiffness,track damping characteristics,foundation type,ballast settlement from fouling and/or degradation,as well as fill and s...Railway transitions experience differential movements due to differences in track system stiffness,track damping characteristics,foundation type,ballast settlement from fouling and/or degradation,as well as fill and subgrade settlement.This differential movement is especially problematic for high speed rail infrastructure as the 'bump' at the transition is accentuated at high speeds.Identification of different factors contributing towards this differential movement,as well as development of design and maintenance strategies to mitigate the problem is imperative for the safe and economical operation of both freight and passenger rail networks.This paper presents the research framework and initial instrumentation details from an ongoing research effort at the University of Illinois at Urbana-Champaign.Three bridge approaches experiencing recurrent geometry problems were instrumented using multidepth deflectometers(MDDs) and strain gages to identify different factors contributing to the development of differential movements.展开更多
Based on the vehicle track coupling dynamics theory, a new spatial dynamic numerical model of vehicle track subgrade coupling system was established considering the interaction among different structural layers in the...Based on the vehicle track coupling dynamics theory, a new spatial dynamic numerical model of vehicle track subgrade coupling system was established considering the interaction among different structural layers in the subgrade system. The dynamic responses of the coupled system were analyzed when the speed of train was 350 km/h and the transition was filled with graded broken stones mixed with 5% cement. The results indicate that the setting form of bridge-approach embankment section has little effect on the dynamic responses, thus designers can choose it on account of the practical circumstances. Because the location about 5 m from the bridge abutment has the greatest deformation, the stiffness within 0 5 m zone behind the abutment should be specially designed. The results of the study from vehicle track dynamics show that the maximum allowable track deflection angle should be 0.09% and the coefficient of subgrade reaction(K30) is greater than 190 MPa within the 0 5 m zone behind the abutment and greater than 150 MPa in other zones.展开更多
Recently, the National Typhoon Center (NTC) at the Korea Meteorological Administration launched a track-pattern-based model that predicts the horizontal distribution of tropical cyclone (TC) track density from Jun...Recently, the National Typhoon Center (NTC) at the Korea Meteorological Administration launched a track-pattern-based model that predicts the horizontal distribution of tropical cyclone (TC) track density from June to October. This model is the first approach to target seasonal TC track clusters covering the entire western North Pacific (WNP) basin, and may represent a milestone for seasonal TC forecasting, using a simple statistical method that can be applied at weather operation centers. In this note, we describe the procedure of the track-pattern-based model with brief technical background to provide practical information on the use and operation of the model. The model comprises three major steps. First, long-term data of WNP TC tracks reveal seven climatological track clusters. Second, the TC counts for each cluster are predicted using a hybrid statistical-dynamical method, using the seasonal prediction of large-scale environments. Third, the final forecast map of track density is constructed by merging the spatial probabilities of the seven clusters and applying necessary bias corrections. Although the model is developed to issue the seasonal forecast in mid-May, it can be applied to alternative dates and target seasons following the procedure described in this note. Work continues on establishing an automatic system for this model at the NTC.展开更多
基金supported by the National Natural Science Foundation of China (Grant No.10972134)the Specialized Research Fund for the Doctoral Program of Higher Education (Grant No.20050280008)
文摘Based on particle approach and tidal flow model this article studies the behavior of the oil slick on the water surface in the Huangpu River, a tidal waterway in Shanghai. In order to track the oil slick motion, a two-dimensional oil trajectory model is used. The dynamical properties of spilled oil characterized by advection, oil spreading and turbulent diffusion are considered in the model. The simulation results consistent with the flume experimental data show that the model is applicable. Both simulation and experiment illustrate that the tidal flow has a great influence on the oil slick motion. The calculated results can be used as a reference for the response to oil spill accidents in rivers.
文摘An objective prediction approach to the 6 h- 144 h track and intensity of tropical cyclones over the northwestern Pacific is proposed. On the basis of both analog deviation technique and completed historical sample curve library, the track or intensity prediction for each forecast period are determined respectively through the optimum weighted superposition of displacement or intensity change of the cases, with different number and weighted coefficient corresponding to minimal analog deviation, from different tropical cyclone or different stage of the same cyclone. so that the prediction results for both forecast period and entire process are optimal. The verification suggests that the approach exhibits better forecast performance than other previous forecast methods by having remarkable decreasing forecast errors in short- and medium-range forecast of both track and intensity,and that the approach can also be used to predict effectively the decay process of tropical cyclone and is able to predict anomalous track and tropical depression.
文摘Railway transitions experience differential movements due to differences in track system stiffness,track damping characteristics,foundation type,ballast settlement from fouling and/or degradation,as well as fill and subgrade settlement.This differential movement is especially problematic for high speed rail infrastructure as the 'bump' at the transition is accentuated at high speeds.Identification of different factors contributing towards this differential movement,as well as development of design and maintenance strategies to mitigate the problem is imperative for the safe and economical operation of both freight and passenger rail networks.This paper presents the research framework and initial instrumentation details from an ongoing research effort at the University of Illinois at Urbana-Champaign.Three bridge approaches experiencing recurrent geometry problems were instrumented using multidepth deflectometers(MDDs) and strain gages to identify different factors contributing to the development of differential movements.
基金Project(41030742) supported by the National Natural Science Foundation of ChinaProject(2009G010-c) supported by the Technological Research and Development Programs of the Ministry of Railways,China
文摘Based on the vehicle track coupling dynamics theory, a new spatial dynamic numerical model of vehicle track subgrade coupling system was established considering the interaction among different structural layers in the subgrade system. The dynamic responses of the coupled system were analyzed when the speed of train was 350 km/h and the transition was filled with graded broken stones mixed with 5% cement. The results indicate that the setting form of bridge-approach embankment section has little effect on the dynamic responses, thus designers can choose it on account of the practical circumstances. Because the location about 5 m from the bridge abutment has the greatest deformation, the stiffness within 0 5 m zone behind the abutment should be specially designed. The results of the study from vehicle track dynamics show that the maximum allowable track deflection angle should be 0.09% and the coefficient of subgrade reaction(K30) is greater than 190 MPa within the 0 5 m zone behind the abutment and greater than 150 MPa in other zones.
基金funded by the Korea Meteorological Administration Research and Development Program under Grant CATER 2012-2040supported by the BK21 project of the Korean government
文摘Recently, the National Typhoon Center (NTC) at the Korea Meteorological Administration launched a track-pattern-based model that predicts the horizontal distribution of tropical cyclone (TC) track density from June to October. This model is the first approach to target seasonal TC track clusters covering the entire western North Pacific (WNP) basin, and may represent a milestone for seasonal TC forecasting, using a simple statistical method that can be applied at weather operation centers. In this note, we describe the procedure of the track-pattern-based model with brief technical background to provide practical information on the use and operation of the model. The model comprises three major steps. First, long-term data of WNP TC tracks reveal seven climatological track clusters. Second, the TC counts for each cluster are predicted using a hybrid statistical-dynamical method, using the seasonal prediction of large-scale environments. Third, the final forecast map of track density is constructed by merging the spatial probabilities of the seven clusters and applying necessary bias corrections. Although the model is developed to issue the seasonal forecast in mid-May, it can be applied to alternative dates and target seasons following the procedure described in this note. Work continues on establishing an automatic system for this model at the NTC.