The apparent contact angle of Cassie-Baxter state water droplets can be calculated by the existing theoretical formula, but due to the defects of the micro-structured hydrophobic surface and some inevitable tiny distu...The apparent contact angle of Cassie-Baxter state water droplets can be calculated by the existing theoretical formula, but due to the defects of the micro-structured hydrophobic surface and some inevitable tiny disturbances in the experiment, Cassie-Baxter state water droplets will appear partly in Wenzel state, that is, the mixed state water droplets. In this paper, apparent contact angles of Cassie-Baxter state and mixed state water droplets on micro-structured hydrophobic surfaces are compared. The research shows that if the projected area fraction of water-solid F in the Cassie-Baxter formula is replaced by the local projected area fraction of water-solid F′, the apparent contact angles of water droplets in both Cassie-Baxter state and the mixed state can be calculated. Further experimental results indicate that the contact state of water droplets nearby the outermost three-phase contact line plays a more important role in determining the apparent contact angle. This conclusion is significant to the understanding of the apparent contact angle and wetting property.展开更多
基金supported by the National Natural Science Foundation of China (Grant Nos. 10672089 and 10872106)
文摘The apparent contact angle of Cassie-Baxter state water droplets can be calculated by the existing theoretical formula, but due to the defects of the micro-structured hydrophobic surface and some inevitable tiny disturbances in the experiment, Cassie-Baxter state water droplets will appear partly in Wenzel state, that is, the mixed state water droplets. In this paper, apparent contact angles of Cassie-Baxter state and mixed state water droplets on micro-structured hydrophobic surfaces are compared. The research shows that if the projected area fraction of water-solid F in the Cassie-Baxter formula is replaced by the local projected area fraction of water-solid F′, the apparent contact angles of water droplets in both Cassie-Baxter state and the mixed state can be calculated. Further experimental results indicate that the contact state of water droplets nearby the outermost three-phase contact line plays a more important role in determining the apparent contact angle. This conclusion is significant to the understanding of the apparent contact angle and wetting property.