Quantitative structure-activity relationship methods are used to study the quantitative structure tribo-ability relationship (QSTR), which refers to the tribology capability of a compound from the calculation of struc...Quantitative structure-activity relationship methods are used to study the quantitative structure tribo-ability relationship (QSTR), which refers to the tribology capability of a compound from the calculation of structure descriptors. Here, we used the Bayesian regularization neural network (BRNN) to establish a QSTR prediction model. Two-dimensional (2D) BRNN-QSTR models can flexibly and easily estimate lubricant-additive antiwear properties. Our results show that electron transfer and heteroatoms (such as S, P, O, and N) in a lubricant-additive molecule improve the antiwear ability. We also found that molecular connectivity indices are good descriptors of 2D BRNN-QSTR models.展开更多
Different contents of biodiesel and petrodiesel were incorporated into diesel engine oils. The oxidative stability, detergency and antiwear performance of the formulated diesel oils were evaluated. The results indicat...Different contents of biodiesel and petrodiesel were incorporated into diesel engine oils. The oxidative stability, detergency and antiwear performance of the formulated diesel oils were evaluated. The results indicated that, compared with petrodiesel, biodiesel was more liable to promote oxidation degradation of diesel oils, leading to worse oxidative stability, detergency and antiwear ability of the oils.展开更多
基金the National Basic Research (973) Program of China,the National Natural Science Foundation of China
文摘Quantitative structure-activity relationship methods are used to study the quantitative structure tribo-ability relationship (QSTR), which refers to the tribology capability of a compound from the calculation of structure descriptors. Here, we used the Bayesian regularization neural network (BRNN) to establish a QSTR prediction model. Two-dimensional (2D) BRNN-QSTR models can flexibly and easily estimate lubricant-additive antiwear properties. Our results show that electron transfer and heteroatoms (such as S, P, O, and N) in a lubricant-additive molecule improve the antiwear ability. We also found that molecular connectivity indices are good descriptors of 2D BRNN-QSTR models.
基金the financial support from the Natural Science Foundation of Chongqing(Project NO. CSTC, 2011JJA90020)the Science Foundation for Young Teachers of Logistical Engineering University
文摘Different contents of biodiesel and petrodiesel were incorporated into diesel engine oils. The oxidative stability, detergency and antiwear performance of the formulated diesel oils were evaluated. The results indicated that, compared with petrodiesel, biodiesel was more liable to promote oxidation degradation of diesel oils, leading to worse oxidative stability, detergency and antiwear ability of the oils.