In expansions of arbitrary functions in Bessel functions or Spherical Bessel functions, a dual partner set of polynomials play a role. For the Bessel functions, these are the Chebyshev polynomials of first kind and fo...In expansions of arbitrary functions in Bessel functions or Spherical Bessel functions, a dual partner set of polynomials play a role. For the Bessel functions, these are the Chebyshev polynomials of first kind and for the Spherical Bessel functions the Legendre polynomials. These two sets of functions appear in many formulas of the expansion and in the completeness and (bi)-orthogonality relations. The analogy to expansions of functions in Taylor series and in moment series and to expansions in Hermite functions is elaborated. Besides other special expansion, we find the expansion of Bessel functions in Spherical Bessel functions and their inversion and of Chebyshev polynomials of first kind in Legendre polynomials and their inversion. For the operators which generate the Spherical Bessel functions from a basic Spherical Bessel function, the normally ordered (or disentangled) form is found.展开更多
文摘In expansions of arbitrary functions in Bessel functions or Spherical Bessel functions, a dual partner set of polynomials play a role. For the Bessel functions, these are the Chebyshev polynomials of first kind and for the Spherical Bessel functions the Legendre polynomials. These two sets of functions appear in many formulas of the expansion and in the completeness and (bi)-orthogonality relations. The analogy to expansions of functions in Taylor series and in moment series and to expansions in Hermite functions is elaborated. Besides other special expansion, we find the expansion of Bessel functions in Spherical Bessel functions and their inversion and of Chebyshev polynomials of first kind in Legendre polynomials and their inversion. For the operators which generate the Spherical Bessel functions from a basic Spherical Bessel function, the normally ordered (or disentangled) form is found.