In this paper, we investigate the dynamics in a class of discrete-time neuron mod-els. The neuron model we discussed, defined by such periodic input-output mapping as a sinusoidal function, has a remarkably larger mem...In this paper, we investigate the dynamics in a class of discrete-time neuron mod-els. The neuron model we discussed, defined by such periodic input-output mapping as a sinusoidal function, has a remarkably larger memory capacity than the conven-tional association system with the monotonous function. Our results show that the orbit of the model takes a conventional bifurcation route, from stable equilibrium, to periodicity, even to chaotic region. And the theoretical analysis is verified by numerical simula...展开更多
基金Specialized research fund for outstanding young scholars in universities of Shanghai (GrantNo2-2008-26)
文摘In this paper, we investigate the dynamics in a class of discrete-time neuron mod-els. The neuron model we discussed, defined by such periodic input-output mapping as a sinusoidal function, has a remarkably larger memory capacity than the conven-tional association system with the monotonous function. Our results show that the orbit of the model takes a conventional bifurcation route, from stable equilibrium, to periodicity, even to chaotic region. And the theoretical analysis is verified by numerical simula...