锂离子电池(Lithium-ion batteries,LIBs)的剩余使用寿命(remaining useful life,RUL)预测在电池故障预测与健康管理(prognostics and health management,PHM)中起着十分重要的作用。准确预测电池RUL可以提前对存在安全隐患的电池进行...锂离子电池(Lithium-ion batteries,LIBs)的剩余使用寿命(remaining useful life,RUL)预测在电池故障预测与健康管理(prognostics and health management,PHM)中起着十分重要的作用。准确预测电池RUL可以提前对存在安全隐患的电池进行维护和更换,以确保储能系统安全可靠。文章提出一种基于蚁狮优化和支持向量回归(ant lion optimization and support vector regression,ALO-SVR)的方法,可有效提高锂离子电池RUL预测的准确性。SVR方法在处理小样本数据和时间序列分析上具有优势,但SVR方法在内核参数选择上存在困难。因此,文章利用ALO算法优化SVR核参数,随后采用PCoE(NASA ames prognostics center of excellence)和CALCE(center for advanced life cycle engineering)电池数据集对所提方法进行仿真验证。通过对比SVR方法,ALO-SVR方法可以提供更精确的电池RUL预测结果,能有效提高锂离子电池剩余使用寿命预测的准确性和鲁棒性。展开更多
文摘锂离子电池(Lithium-ion batteries,LIBs)的剩余使用寿命(remaining useful life,RUL)预测在电池故障预测与健康管理(prognostics and health management,PHM)中起着十分重要的作用。准确预测电池RUL可以提前对存在安全隐患的电池进行维护和更换,以确保储能系统安全可靠。文章提出一种基于蚁狮优化和支持向量回归(ant lion optimization and support vector regression,ALO-SVR)的方法,可有效提高锂离子电池RUL预测的准确性。SVR方法在处理小样本数据和时间序列分析上具有优势,但SVR方法在内核参数选择上存在困难。因此,文章利用ALO算法优化SVR核参数,随后采用PCoE(NASA ames prognostics center of excellence)和CALCE(center for advanced life cycle engineering)电池数据集对所提方法进行仿真验证。通过对比SVR方法,ALO-SVR方法可以提供更精确的电池RUL预测结果,能有效提高锂离子电池剩余使用寿命预测的准确性和鲁棒性。