The Niumaoquan layered gabbroic intrusion is in the southern margin of the Central Asian Orogenic Belt in North Xinjiang, China, and hosts a Fe-Ti oxide deposit in its evolved gabbroic phases. In this paper, we report...The Niumaoquan layered gabbroic intrusion is in the southern margin of the Central Asian Orogenic Belt in North Xinjiang, China, and hosts a Fe-Ti oxide deposit in its evolved gabbroic phases. In this paper, we report zircon U-Pb age, Sr-Nd-Hf isotopes, plagioclase chemistry, and whole-rock geochemistry of the Niumaoquan layered gabbroic intrusion. Zircon grains separated from an anorthosite sample analyzed by laser ablation inductively coupled plasma mass spectrometry yielded a concordia age of 314.7±0.74 Ma, indicating that the Niumaoquan ore-bearing gabbroic intrusion was emplaced during the Late Carboniferous. The olivine gabbro texture and plagioclase chemistry suggest that plagioclase was an early crystallized silicate phase that crystallized prior to olivine. Fractional crystallization and accumulation of plagioclase significantly controlled the evolution of the Niumaoquan gabbroic intrusion and contributed to the formation of anorthosite layers, causing metallogenic elements to become enriched in the residual melt. The Niumaoquan gabbroic intrusion is characterized by the enrichment of large ion lithophile elements and depletion of high field strength elements, positive zircon εHf(t) values(+2.1 to +12.2), positive εNd(t) values(+3.3 to +5.2), and low initial ^(87)Sr/^(86)Sr ratios(0.7039 to 0.7047), suggesting that the parental magma was produced by interactions between metasomatized lithospheric mantle and depleted asthenospheric melts at an early post-collision stage. The Fe-Ti oxide mineralization of the Niumaoquan intrusion benefited from interactions between depleted asthenospheric melts and lithospheric mantle, and fractional crystallization of abundant plagioclase and magnesian minerals.展开更多
The primordial crust on the Earth formed from the crystallization of the surface magma ocean during the Hadean.However,geological surveys have found no evidence of rocks dating back to more than 4 Ga on the Earth's s...The primordial crust on the Earth formed from the crystallization of the surface magma ocean during the Hadean.However,geological surveys have found no evidence of rocks dating back to more than 4 Ga on the Earth's surface,suggesting the Hadean crust was lost due to some processes.We investigated the subduction of one of the possible candidates for the primordial crust,anorthosite and KREEP crust similar to the Moon,which is also considered to have formed from the crystallization of the magma ocean.Similar to the present Earth,the subduction of primordial crust by subduction erosion is expected to be an effective way of eliminating primordial crust from the surface.In this study,the subduction rate of the primordial crust via subduction channels is evaluated by numerical simulations.The subduction channels are located between the subducting slab and the mantle wedge and are comprised of primordial crust materials supplied mainly by subduction erosion.We have found that primordial anorthosite and KREEP crust of up to - 50 km thick at the Earth's surface was able to be conveyed to the deep mantle within 0.1-2 Gy by that mechanism.展开更多
The Moon has an anorthositic primordial continental crust. Recently anorthosite has also been discovered on the Martian surface. Although the occurrence of anorthosite is observed to be very limited in Earth's extant...The Moon has an anorthositic primordial continental crust. Recently anorthosite has also been discovered on the Martian surface. Although the occurrence of anorthosite is observed to be very limited in Earth's extant geological record,both lunar and Martian surface geology suggest that anorthosite may have comprised a primordial continent on the early Earth during the first 600 million years after its formation. We hypothesized that differences in the presence of an anorthositic continent on an Earthlike planet are due to planetary size. Earth likely lost its primordial anorthositic continent by tectonic erosion through subduction associated with a kind of proto-plate tectonics(PPT). In contrast, Mars and the Moon, as much smaller planetary bodies, did not lose much of their anorthositic continental crust because mantle convection had weakened and/or largely stopped, and with time, they had appropriately cooled down. Applying this same reasoning to a super-Earth exoplanet suggests that, while a primordial anorthositic continent may briefly form on its surface, such a continent will be likely transported into the deep mantle due to intense mantle convection immediately following its formation. The presence of a primordial continent on an Earth-like planet seems to be essential to whether the planet will be habitable to Earth-like life. The key role of the primordial continent is to provide the necessary and sufficient nutrients for the emergence and evolution of life. With the appearance of a "trinity" consisting of(1) an atmosphere,(2) an ocean, and(3) the primordial continental landmass, material circulation can be maintained to enable a "Habitable Trinity" environment that will permit the emergence of Earth-like life. Thus, with little likelihood of a persistent primordial continent, a super-Earth affords very little chance for Earth-like life to emerge.展开更多
Massif anorthosites form when basaltic magma differentiates in crustal magma chambers to form lowdensity plagioclase and a residual liquid whose density was greater than that of enclosing crustal rocks. The plagioclas...Massif anorthosites form when basaltic magma differentiates in crustal magma chambers to form lowdensity plagioclase and a residual liquid whose density was greater than that of enclosing crustal rocks. The plagioclase and minor pyroxene crystallized in-situ on the floor of the magma chamber to produce the anorthosite complex,and the residual liquid migrated downwards,eventually to solidify as dense Fe-rich cumulates some of which were removed to the mantle.These movements were facilitated by high temperatures in Proterozoic continental crust,thus explaining the restriction of large anorthosite massifs to this period in Earth history.展开更多
The formation of anorthosites in layered intrusions has remained one of petrology's most enduring enigmas. We have studied a sequence of layered chromitite, pyroxenite, norite and anorthosite overlying the UG2 chromi...The formation of anorthosites in layered intrusions has remained one of petrology's most enduring enigmas. We have studied a sequence of layered chromitite, pyroxenite, norite and anorthosite overlying the UG2 chromitite in the Upper Critical Zone of the eastern Bushveld Complex at the Smokey Hills platinum mine. Layers show very strong medium to large scale lateral continuity, but abundant small scale irregularities and transgressive relationships. Particularly notable are irregular masses and seams of anorthosite that have intrusive relationships to their host rocks. An anorthosite layer locally transgresses several 10 s of metres into its footwall, forming what is referred to as a "pothole" in the Bushveld Complex. It is proposed that the anorthosites formed from plagioclase-rich crystal mushes that originally accumulated at or near the top of the cumulate pile. The slurries were mobilised during tectonism induced by chamber subsidence, a model that bears some similarity to that generally proposed for oceanic mass flows. The anorthosite slurries locally collapsed into pull-apart structures and injected their host rocks. The final step was down-dip drainage of Fe-rich intercumulus liquid, leaving behind anorthosite adcumulates.展开更多
The quasi-monomineralic composition and huge spatial extent of massif-type anorthosites make detecting lithological regions and boundaries challenging.We use processed Landsat 8 OLI multispectral images and ALOS digit...The quasi-monomineralic composition and huge spatial extent of massif-type anorthosites make detecting lithological regions and boundaries challenging.We use processed Landsat 8 OLI multispectral images and ALOS digital elevation models integrated with field and petrographic observations to characterize the architecture of the≥17,000 km2 Mesoproterozoic Kunene Complex(KC)anorthosite suite in Angola and Namibia.Images of false colour composite bands 6,4 and 1 and band ratios 4/2(ferric minerals),6/5(ferrous minerals)and 6/7(OH-bearing minerals),as well as assessment of the PCA and MNF matrices of eigenvectors and eigenvalues from Landsat 8 data using available spectral libraries,have substantially improved the interpretation of the Kunene Complex rock types and structures.The dataset shows that the reflectance signature of KC anorthositic rocks is primarily a function of the degree of metasomatism,which is most significant in olivine-poor rock types.The weathering intensity of the olivine-bearing anorthosite substrate is another control on the remote sensing signal.Our remote sensing and field-based approach has enabled us to divide the KC anorthosite suite into six distinct spectral and architecture domains and at least four distinct magmatic plutons when considering available high-precision geochronological data.The northernmost pluton(ca.1380 Ma)of massive,olivine-bearing anorthosite shows distinct remote sensing signatures in the band ratio and MNF images marked by the dominance of OH-bearing and subordinate ferric minerals.The central pluton(1412–1400 Ma)is composed of NNE-to N-striking steeply dipping interlayered olivine-bearing and olivinepoor anorthosite,which correspond to ridges of dark-coloured,low albedo rocks with subordinate slightly oxidised ferrous mineral spectral signatures,and valleys of low albedo and OH-bearing mineral spectral signatures.A NNE-striking tectonic zone along a linear belt of KC granite gneiss separates the northern and central plutons.To the south is a NNW-to NNE-striking l展开更多
Lunar anorthosite is a major rock of the lunar highlands,which formed as a result of plagioclasefloatation in the lunar magma ocean(LMO).Constraints on the sufficient conditions that resulted in the formation of a t...Lunar anorthosite is a major rock of the lunar highlands,which formed as a result of plagioclasefloatation in the lunar magma ocean(LMO).Constraints on the sufficient conditions that resulted in the formation of a thick pure anorthosite(mode of plagioclase 〉95 vol.%) is a key to reveal the early magmatic evolution of the terrestrial planets.To form the pure lunar anorthosite,plagioclase should have separated from the magma ocean with low crystal fraction.Crystal networks of plagioclase and mafic minerals develop when the crystal fraction in the magma(φ) is higher than ca.40-60 vol.%,which inhibit the formation of pure anorthosite.In contrast,when φ is small,the magma ocean is highly turbulent,and plagioclase is likely to become entrained in the turbulent magma rather than separated from the melt.To determine the necessary conditions in which anorthosite forms from the LMO,this study adopted the energy criterion formulated by Solomatov.The composition of melt,temperature,and pressure when plagioclase crystallizes are constrained by using MELTS/pMELTS to calculate the density and viscosity of the melt.When plagioclase starts to crystallize,the Mg~# of melt becomes 0.59 at 1291 C.The density of the melt is smaller than that of plagioclase for P 〉 2.1 kbar(ca.50 km deep),and the critical diameter of plagioclase to separate from the melt becomes larger than the typical crystal diameter of plagioclase(1.8-3 cm).This suggests that plagioclase is likely entrained in the LMO just after the plagioclase starts to crystallize.When the Mg~# of melt becomes 0.54 at 1263 C,the density of melt becomes larger than that of plagioclase even for 0 kbar.When the Mg~# of melt decreases down to 0.46 at 1218 C,the critical diameter of plagioclase to separate from the melt becomes 1.5-2.5 cm,which is nearly equal to the typical plagioclase of the lunar anorthosite.This suggests that plagioclase could separate from the melt.One of the differences between the Earth and the Moon is the presence of water.If the terr展开更多
基金financially supported by the National Natural Science Foundation of China(41372102)Chinese Geological Survey Project(DD20160071)
文摘The Niumaoquan layered gabbroic intrusion is in the southern margin of the Central Asian Orogenic Belt in North Xinjiang, China, and hosts a Fe-Ti oxide deposit in its evolved gabbroic phases. In this paper, we report zircon U-Pb age, Sr-Nd-Hf isotopes, plagioclase chemistry, and whole-rock geochemistry of the Niumaoquan layered gabbroic intrusion. Zircon grains separated from an anorthosite sample analyzed by laser ablation inductively coupled plasma mass spectrometry yielded a concordia age of 314.7±0.74 Ma, indicating that the Niumaoquan ore-bearing gabbroic intrusion was emplaced during the Late Carboniferous. The olivine gabbro texture and plagioclase chemistry suggest that plagioclase was an early crystallized silicate phase that crystallized prior to olivine. Fractional crystallization and accumulation of plagioclase significantly controlled the evolution of the Niumaoquan gabbroic intrusion and contributed to the formation of anorthosite layers, causing metallogenic elements to become enriched in the residual melt. The Niumaoquan gabbroic intrusion is characterized by the enrichment of large ion lithophile elements and depletion of high field strength elements, positive zircon εHf(t) values(+2.1 to +12.2), positive εNd(t) values(+3.3 to +5.2), and low initial ^(87)Sr/^(86)Sr ratios(0.7039 to 0.7047), suggesting that the parental magma was produced by interactions between metasomatized lithospheric mantle and depleted asthenospheric melts at an early post-collision stage. The Fe-Ti oxide mineralization of the Niumaoquan intrusion benefited from interactions between depleted asthenospheric melts and lithospheric mantle, and fractional crystallization of abundant plagioclase and magnesian minerals.
基金supported partly by KAKENHI 26800237 and 26287105
文摘The primordial crust on the Earth formed from the crystallization of the surface magma ocean during the Hadean.However,geological surveys have found no evidence of rocks dating back to more than 4 Ga on the Earth's surface,suggesting the Hadean crust was lost due to some processes.We investigated the subduction of one of the possible candidates for the primordial crust,anorthosite and KREEP crust similar to the Moon,which is also considered to have formed from the crystallization of the magma ocean.Similar to the present Earth,the subduction of primordial crust by subduction erosion is expected to be an effective way of eliminating primordial crust from the surface.In this study,the subduction rate of the primordial crust via subduction channels is evaluated by numerical simulations.The subduction channels are located between the subducting slab and the mantle wedge and are comprised of primordial crust materials supplied mainly by subduction erosion.We have found that primordial anorthosite and KREEP crust of up to - 50 km thick at the Earth's surface was able to be conveyed to the deep mantle within 0.1-2 Gy by that mechanism.
基金supported by JSPS KAKENHI (Grant-in-Aid for Scientific Research on Innovative Areas), Grant Number 26106002(Hadean Bio Science)the Tokyo Dome Corporation for support of the TeNQ exhibitthe branch of Space Exploration Education & Discovery, the University Museum
文摘The Moon has an anorthositic primordial continental crust. Recently anorthosite has also been discovered on the Martian surface. Although the occurrence of anorthosite is observed to be very limited in Earth's extant geological record,both lunar and Martian surface geology suggest that anorthosite may have comprised a primordial continent on the early Earth during the first 600 million years after its formation. We hypothesized that differences in the presence of an anorthositic continent on an Earthlike planet are due to planetary size. Earth likely lost its primordial anorthositic continent by tectonic erosion through subduction associated with a kind of proto-plate tectonics(PPT). In contrast, Mars and the Moon, as much smaller planetary bodies, did not lose much of their anorthositic continental crust because mantle convection had weakened and/or largely stopped, and with time, they had appropriately cooled down. Applying this same reasoning to a super-Earth exoplanet suggests that, while a primordial anorthositic continent may briefly form on its surface, such a continent will be likely transported into the deep mantle due to intense mantle convection immediately following its formation. The presence of a primordial continent on an Earth-like planet seems to be essential to whether the planet will be habitable to Earth-like life. The key role of the primordial continent is to provide the necessary and sufficient nutrients for the emergence and evolution of life. With the appearance of a "trinity" consisting of(1) an atmosphere,(2) an ocean, and(3) the primordial continental landmass, material circulation can be maintained to enable a "Habitable Trinity" environment that will permit the emergence of Earth-like life. Thus, with little likelihood of a persistent primordial continent, a super-Earth affords very little chance for Earth-like life to emerge.
基金supported by the M&Ms project of the French Agence Nationale de Recherche
文摘Massif anorthosites form when basaltic magma differentiates in crustal magma chambers to form lowdensity plagioclase and a residual liquid whose density was greater than that of enclosing crustal rocks. The plagioclase and minor pyroxene crystallized in-situ on the floor of the magma chamber to produce the anorthosite complex,and the residual liquid migrated downwards,eventually to solidify as dense Fe-rich cumulates some of which were removed to the mantle.These movements were facilitated by high temperatures in Proterozoic continental crust,thus explaining the restriction of large anorthosite massifs to this period in Earth history.
文摘The formation of anorthosites in layered intrusions has remained one of petrology's most enduring enigmas. We have studied a sequence of layered chromitite, pyroxenite, norite and anorthosite overlying the UG2 chromitite in the Upper Critical Zone of the eastern Bushveld Complex at the Smokey Hills platinum mine. Layers show very strong medium to large scale lateral continuity, but abundant small scale irregularities and transgressive relationships. Particularly notable are irregular masses and seams of anorthosite that have intrusive relationships to their host rocks. An anorthosite layer locally transgresses several 10 s of metres into its footwall, forming what is referred to as a "pothole" in the Bushveld Complex. It is proposed that the anorthosites formed from plagioclase-rich crystal mushes that originally accumulated at or near the top of the cumulate pile. The slurries were mobilised during tectonism induced by chamber subsidence, a model that bears some similarity to that generally proposed for oceanic mass flows. The anorthosite slurries locally collapsed into pull-apart structures and injected their host rocks. The final step was down-dip drainage of Fe-rich intercumulus liquid, leaving behind anorthosite adcumulates.
基金supported by a National Research Foundation(NRF)Thuthuka Grant(TTK14052367805)the DSI-NRF Centre of Excellence for Integrated Mineral and Energy Resource Analysis(DSI-NRF CIMERA)。
文摘The quasi-monomineralic composition and huge spatial extent of massif-type anorthosites make detecting lithological regions and boundaries challenging.We use processed Landsat 8 OLI multispectral images and ALOS digital elevation models integrated with field and petrographic observations to characterize the architecture of the≥17,000 km2 Mesoproterozoic Kunene Complex(KC)anorthosite suite in Angola and Namibia.Images of false colour composite bands 6,4 and 1 and band ratios 4/2(ferric minerals),6/5(ferrous minerals)and 6/7(OH-bearing minerals),as well as assessment of the PCA and MNF matrices of eigenvectors and eigenvalues from Landsat 8 data using available spectral libraries,have substantially improved the interpretation of the Kunene Complex rock types and structures.The dataset shows that the reflectance signature of KC anorthositic rocks is primarily a function of the degree of metasomatism,which is most significant in olivine-poor rock types.The weathering intensity of the olivine-bearing anorthosite substrate is another control on the remote sensing signal.Our remote sensing and field-based approach has enabled us to divide the KC anorthosite suite into six distinct spectral and architecture domains and at least four distinct magmatic plutons when considering available high-precision geochronological data.The northernmost pluton(ca.1380 Ma)of massive,olivine-bearing anorthosite shows distinct remote sensing signatures in the band ratio and MNF images marked by the dominance of OH-bearing and subordinate ferric minerals.The central pluton(1412–1400 Ma)is composed of NNE-to N-striking steeply dipping interlayered olivine-bearing and olivinepoor anorthosite,which correspond to ridges of dark-coloured,low albedo rocks with subordinate slightly oxidised ferrous mineral spectral signatures,and valleys of low albedo and OH-bearing mineral spectral signatures.A NNE-striking tectonic zone along a linear belt of KC granite gneiss separates the northern and central plutons.To the south is a NNW-to NNE-striking l
基金supported by a grant from the Ministry of Education,Culture,Sports,Science,and Technology of Japan,Grant-in-Aid for Scientific Research on Innovative Areas(Grant Number 26106002)
文摘Lunar anorthosite is a major rock of the lunar highlands,which formed as a result of plagioclasefloatation in the lunar magma ocean(LMO).Constraints on the sufficient conditions that resulted in the formation of a thick pure anorthosite(mode of plagioclase 〉95 vol.%) is a key to reveal the early magmatic evolution of the terrestrial planets.To form the pure lunar anorthosite,plagioclase should have separated from the magma ocean with low crystal fraction.Crystal networks of plagioclase and mafic minerals develop when the crystal fraction in the magma(φ) is higher than ca.40-60 vol.%,which inhibit the formation of pure anorthosite.In contrast,when φ is small,the magma ocean is highly turbulent,and plagioclase is likely to become entrained in the turbulent magma rather than separated from the melt.To determine the necessary conditions in which anorthosite forms from the LMO,this study adopted the energy criterion formulated by Solomatov.The composition of melt,temperature,and pressure when plagioclase crystallizes are constrained by using MELTS/pMELTS to calculate the density and viscosity of the melt.When plagioclase starts to crystallize,the Mg~# of melt becomes 0.59 at 1291 C.The density of the melt is smaller than that of plagioclase for P 〉 2.1 kbar(ca.50 km deep),and the critical diameter of plagioclase to separate from the melt becomes larger than the typical crystal diameter of plagioclase(1.8-3 cm).This suggests that plagioclase is likely entrained in the LMO just after the plagioclase starts to crystallize.When the Mg~# of melt becomes 0.54 at 1263 C,the density of melt becomes larger than that of plagioclase even for 0 kbar.When the Mg~# of melt decreases down to 0.46 at 1218 C,the critical diameter of plagioclase to separate from the melt becomes 1.5-2.5 cm,which is nearly equal to the typical plagioclase of the lunar anorthosite.This suggests that plagioclase could separate from the melt.One of the differences between the Earth and the Moon is the presence of water.If the terr