The most prominent aspect of multiphase flow is the variation in the physical distribution of the phases in the flow conduit known as the flow pattern. Several different flow patterns can exist under different flow co...The most prominent aspect of multiphase flow is the variation in the physical distribution of the phases in the flow conduit known as the flow pattern. Several different flow patterns can exist under different flow conditions which have significant effects on liquid holdup, pressure gradient and heat transfer. Gas-liquid two-phase flow in an annulus can be found in a variety of practical situations. In high rate oil and gas production, it may be beneficial to flow fluids vertically through the annulus configuration between well tubing and casing. The flow patterns in annuli are different from pipe flow. There are both casing and tubing liquid films in slug flow and annular flow in the annulus. Multiphase heat transfer depends on the hydrodynamic behavior of the flow. There are very limited research results that can be found in the open literature for multiphase heat transfer in wellbore annuli. A mechanistic model of multiphase heat transfer is developed for different flow patterns of upward gas-liquid flow in vertical annuli. The required local flow parameters are predicted by use of the hydraulic model of steady-state multiphase flow in wellbore annuli recently developed by Yin et al. The modified heat-transfer model for single gas or liquid flow is verified by comparison with Manabe's experimental results. For different flow patterns, it is compared with modified unified Zhang et al. model based on representative diameters.展开更多
The purpose of this paper is to find the effect of heat source/sink parameter on free convective flow of a polar fluid in open-ended vertical concentric annuli. Exact solutions of the non-dimensional differential equa...The purpose of this paper is to find the effect of heat source/sink parameter on free convective flow of a polar fluid in open-ended vertical concentric annuli. Exact solutions of the non-dimensional differential equations describing the flow model have been obtained one by one for two different cases of source and sink. To observe the effect of the physical parameters such as source/sink and vertex viscosity, the numerical results of the velocity and microrotational velocity are finally shown on the graphs.展开更多
In S^3 a smooth Jordan curve Γ and a great circle σ which are mutually linked are shown to bound at least two minimal annuli. And in S^n(n≥3) it is proved that there exist at least two minimal annuli bounded by a s...In S^3 a smooth Jordan curve Γ and a great circle σ which are mutually linked are shown to bound at least two minimal annuli. And in S^n(n≥3) it is proved that there exist at least two minimal annuli bounded by a smooth Jordan curve Γ and a great circle σ provided that σ is disjoint from Γ and intersects a least area surface spanning Γ.展开更多
A well-known cornerstone in fluid mechanics is the equations that relate the friction factor to the Reynolds number obtained from the measurements in cylindrical cross-sectional tubes. The extension of these equations...A well-known cornerstone in fluid mechanics is the equations that relate the friction factor to the Reynolds number obtained from the measurements in cylindrical cross-sectional tubes. The extension of these equations to different geometries failed to give reliable results. The introduction of the Hydraulic Diameter has fixed this issue particularly for the square ducts. However, for non-symmetric flows, as in concentric annuli, the discrepancies were unacceptable. Several attempts have been made to fix these problems with finally the introduction of a new concept like, “Laminar Equivalent Hydraulic Diameter” or “Efficient Hydraulic Diameter” provided satisfactory results. This approach seems to have fixed the problem and hence has been widely accepted. Nevertheless, it is based on a non-robust theoretical argument. In the present paper, it has been demonstrated that the solely use of the “Hydraulic Diameter” concept is insufficient to describe non-symmetric flows as in concentric annuli. It appears the need to use the Z axis component of the skew driving force for the laminar flow and the parameter <span style="white-space:nowrap;">λ</span> for the turbulent one. At the same time, instead, it has been shown that in the case of flow in square and rectangular ducts, the “Hydraulic Diameter” is sufficient to describe it. In this case, the flow is practically symmetric. Moreover, several new straightforward equations are provided, which simplify a lot dealing with non-cylindrical cross-sectional conduits. In doing so, the concept of “Eigenvectors-Eigenvalues” has been implemented. This theoretical approach could help to simplify other non-symmetric cases in fluid dynamics. To mention, “Flow past immersed non-symmetric bodies”, “Flow in curved conduits” etc.展开更多
In this paper, we discuss the uniqueness problem of algebroid functions on annull, we get several uniqueness theorems of algebroid functions on annuli, which extend the Nevanlinna value distribution theory for algebro...In this paper, we discuss the uniqueness problem of algebroid functions on annull, we get several uniqueness theorems of algebroid functions on annuli, which extend the Nevanlinna value distribution theory for algebroid functions on annuli.展开更多
Based on the governing equations of the inner cyinder of the unsteady flow of the power law fluid in eccentric annuli with the inner cylinder reciprocating axially in bipolar coordinate system, the calculation formula...Based on the governing equations of the inner cyinder of the unsteady flow of the power law fluid in eccentric annuli with the inner cylinder reciprocating axially in bipolar coordinate system, the calculation formulae of tangential force were established, and the relevant numerical calculation method was given. Taking the aqueous solution of partially hydrolyzed polyacrylamides (HPAM) for examples, the tangential forces were calculated by using the formulae and numerical calculation method mentioned above;the curves of the tangential force on the wall of the inner cylinder of HPAM aqueous solution were plotted;and the effects on the tangential force of the flow behavior index of the power law fluid, the stroke and the stroke frequency of the inner cylinder were analyzed.展开更多
基金sponsored by the National Natural Science Foundation of China (Grant No. 51504279)Shandong Provincial Natural Science Foundation, China (ZR2014EEQ021)+2 种基金Qingdao Science and Technology (15-9-1-96-jch)the Fundamental Research Funds for the Central Universities (17CX02073, 17CX02011A and R1502039A)973 Project (2015CB251206)
文摘The most prominent aspect of multiphase flow is the variation in the physical distribution of the phases in the flow conduit known as the flow pattern. Several different flow patterns can exist under different flow conditions which have significant effects on liquid holdup, pressure gradient and heat transfer. Gas-liquid two-phase flow in an annulus can be found in a variety of practical situations. In high rate oil and gas production, it may be beneficial to flow fluids vertically through the annulus configuration between well tubing and casing. The flow patterns in annuli are different from pipe flow. There are both casing and tubing liquid films in slug flow and annular flow in the annulus. Multiphase heat transfer depends on the hydrodynamic behavior of the flow. There are very limited research results that can be found in the open literature for multiphase heat transfer in wellbore annuli. A mechanistic model of multiphase heat transfer is developed for different flow patterns of upward gas-liquid flow in vertical annuli. The required local flow parameters are predicted by use of the hydraulic model of steady-state multiphase flow in wellbore annuli recently developed by Yin et al. The modified heat-transfer model for single gas or liquid flow is verified by comparison with Manabe's experimental results. For different flow patterns, it is compared with modified unified Zhang et al. model based on representative diameters.
文摘The purpose of this paper is to find the effect of heat source/sink parameter on free convective flow of a polar fluid in open-ended vertical concentric annuli. Exact solutions of the non-dimensional differential equations describing the flow model have been obtained one by one for two different cases of source and sink. To observe the effect of the physical parameters such as source/sink and vertex viscosity, the numerical results of the velocity and microrotational velocity are finally shown on the graphs.
基金Project supported by Post-doctoral Fellowship of International Center for Theoretical Physics and by the National Natural Science Foundation of China.
文摘In S^3 a smooth Jordan curve Γ and a great circle σ which are mutually linked are shown to bound at least two minimal annuli. And in S^n(n≥3) it is proved that there exist at least two minimal annuli bounded by a smooth Jordan curve Γ and a great circle σ provided that σ is disjoint from Γ and intersects a least area surface spanning Γ.
文摘A well-known cornerstone in fluid mechanics is the equations that relate the friction factor to the Reynolds number obtained from the measurements in cylindrical cross-sectional tubes. The extension of these equations to different geometries failed to give reliable results. The introduction of the Hydraulic Diameter has fixed this issue particularly for the square ducts. However, for non-symmetric flows, as in concentric annuli, the discrepancies were unacceptable. Several attempts have been made to fix these problems with finally the introduction of a new concept like, “Laminar Equivalent Hydraulic Diameter” or “Efficient Hydraulic Diameter” provided satisfactory results. This approach seems to have fixed the problem and hence has been widely accepted. Nevertheless, it is based on a non-robust theoretical argument. In the present paper, it has been demonstrated that the solely use of the “Hydraulic Diameter” concept is insufficient to describe non-symmetric flows as in concentric annuli. It appears the need to use the Z axis component of the skew driving force for the laminar flow and the parameter <span style="white-space:nowrap;">λ</span> for the turbulent one. At the same time, instead, it has been shown that in the case of flow in square and rectangular ducts, the “Hydraulic Diameter” is sufficient to describe it. In this case, the flow is practically symmetric. Moreover, several new straightforward equations are provided, which simplify a lot dealing with non-cylindrical cross-sectional conduits. In doing so, the concept of “Eigenvectors-Eigenvalues” has been implemented. This theoretical approach could help to simplify other non-symmetric cases in fluid dynamics. To mention, “Flow past immersed non-symmetric bodies”, “Flow in curved conduits” etc.
基金Project Supported by the Natural Science Foundation of China(11171013)
文摘In this paper, we discuss the uniqueness problem of algebroid functions on annull, we get several uniqueness theorems of algebroid functions on annuli, which extend the Nevanlinna value distribution theory for algebroid functions on annuli.
文摘Based on the governing equations of the inner cyinder of the unsteady flow of the power law fluid in eccentric annuli with the inner cylinder reciprocating axially in bipolar coordinate system, the calculation formulae of tangential force were established, and the relevant numerical calculation method was given. Taking the aqueous solution of partially hydrolyzed polyacrylamides (HPAM) for examples, the tangential forces were calculated by using the formulae and numerical calculation method mentioned above;the curves of the tangential force on the wall of the inner cylinder of HPAM aqueous solution were plotted;and the effects on the tangential force of the flow behavior index of the power law fluid, the stroke and the stroke frequency of the inner cylinder were analyzed.