The waste sintered Nd-Fe-B magnets were regenerated as magnetic powders via manually crushing (MC) or hydrogen decrepitation (HD) to fabricate anisotropic bonded magnets. Effect of size distribution on the magneti...The waste sintered Nd-Fe-B magnets were regenerated as magnetic powders via manually crushing (MC) or hydrogen decrepitation (HD) to fabricate anisotropic bonded magnets. Effect of size distribution on the magnetic properties of the regenerated magnetic MC and HD powders was investigated. For the MC powders, as the particle size decreased, the remanence (Br) increased first, and then decreased again, while the coercivity (Hci) dropped monotonically. The powders with particle size in the range of 200-450μm possessed the best magnetic properties ofBr of 1.22 T and Hci of 875.6 kAJm. The corresponding bonded magnet exhibited magnetic properties ofBr of 0.838 T, Hci of 940.9 kA/m, and (BH)max of 91.4 kJ/m^3, respectively. On the other hand, the liD powders with particle size range of 200-450 μm bore the best magnetic properties Of Br of 1.24 T and Hci of 860.4 kA/m. Compared with magnetic properties of the waste magnet, the powders retained 93.9% of Br and 70.0% of Hci, respectively. The bonded magnet produced from HD powders possessed Br of 0.9 T, Hci of 841.4 kA/m, and (BH)max of 111.6 kJ/m^3, indicating its good potential in practical applications.展开更多
基金Project supported by the National High Technology Research and Development Program of China(2012AA063201)the Importation and Development of High-Caliber Talents Project of Beijing Municipal Institutions
文摘The waste sintered Nd-Fe-B magnets were regenerated as magnetic powders via manually crushing (MC) or hydrogen decrepitation (HD) to fabricate anisotropic bonded magnets. Effect of size distribution on the magnetic properties of the regenerated magnetic MC and HD powders was investigated. For the MC powders, as the particle size decreased, the remanence (Br) increased first, and then decreased again, while the coercivity (Hci) dropped monotonically. The powders with particle size in the range of 200-450μm possessed the best magnetic properties ofBr of 1.22 T and Hci of 875.6 kAJm. The corresponding bonded magnet exhibited magnetic properties ofBr of 0.838 T, Hci of 940.9 kA/m, and (BH)max of 91.4 kJ/m^3, respectively. On the other hand, the liD powders with particle size range of 200-450 μm bore the best magnetic properties Of Br of 1.24 T and Hci of 860.4 kA/m. Compared with magnetic properties of the waste magnet, the powders retained 93.9% of Br and 70.0% of Hci, respectively. The bonded magnet produced from HD powders possessed Br of 0.9 T, Hci of 841.4 kA/m, and (BH)max of 111.6 kJ/m^3, indicating its good potential in practical applications.