The importance of anharmonic effect in dissociation of molecular systems especially clusters has been noted. In this paper, we shall study the effect of coupled anharmonic oscillator of the standard bilinear form (SBF...The importance of anharmonic effect in dissociation of molecular systems especially clusters has been noted. In this paper, we shall study the effect of coupled anharmonic oscillator of the standard bilinear form (SBF) Morse oscillator (MO) potential on unimolecular reaction. We shall use the systematic theoretical approach, YL method, proposed by Yao and Lin (YAO L, et. al. J Phys Chem A, 2007, 111(29): 6722-6729), which can evaluate anharmonic effects on the rate constants based on the transition state theory. In treating the anharmonic effect with the Morse oscillator potential on unimolecular reactions under collision-free conditions by using the RRKM (Rice-Ramsperger-Kassel-Marcus) theory, the in-verse Laplace transformation of the partition functions was used to obtain the total amount of state and density of state by using the first-order and the second-order approximations of the saddle-point method. To demonstrate the anharmonic effect of the SBF Morse model, we choose some model systems and a real reaction as examples.展开更多
基金Supported by the National Natural Science Foundation of China (Grant No. 10704012)NSC (Taiwan), Academia Sinica, and the Natural Science Foundation of Liaoning Province (Grant No. 2006Z064)
文摘The importance of anharmonic effect in dissociation of molecular systems especially clusters has been noted. In this paper, we shall study the effect of coupled anharmonic oscillator of the standard bilinear form (SBF) Morse oscillator (MO) potential on unimolecular reaction. We shall use the systematic theoretical approach, YL method, proposed by Yao and Lin (YAO L, et. al. J Phys Chem A, 2007, 111(29): 6722-6729), which can evaluate anharmonic effects on the rate constants based on the transition state theory. In treating the anharmonic effect with the Morse oscillator potential on unimolecular reactions under collision-free conditions by using the RRKM (Rice-Ramsperger-Kassel-Marcus) theory, the in-verse Laplace transformation of the partition functions was used to obtain the total amount of state and density of state by using the first-order and the second-order approximations of the saddle-point method. To demonstrate the anharmonic effect of the SBF Morse model, we choose some model systems and a real reaction as examples.
基金supported by the Major Research Plan of the National Natural Science Foundation of China(91441132)Fundamental Research Funds for the Central Universities,China(3132016127,3132016326)~~
文摘使用MP2/6-311++G(2d,2p)方法和基组,计算了丁酸甲酯单分子解离反应体系详细的势能面。应用RRKM理论,计算了在1000-5000 K的温度范围内的正则系综的速率常数。与此同时,在微正则系综下,我们计算了温度为1000-5000 K对应的能量从451.92到1519.52 k J?mol^(-1)的速率常数。计算结果表明反应通道2、4和5的非谐振效应比较明显。因此对于丁酸甲酯单分子解离反应体系来说其非谐振效应是不能忽视的。