Uncontained Engine Rotor Failure(UERF)can cause a catastrophic failure of an aircraft,and the quantitative assessment of the hazards related to UERF is a very important part of safety analysis.However,the procedure fo...Uncontained Engine Rotor Failure(UERF)can cause a catastrophic failure of an aircraft,and the quantitative assessment of the hazards related to UERF is a very important part of safety analysis.However,the procedure for hazard quantification of UERF recommended by the Federal Aviation Administration in advisory circular AC20-128A is cumbersome,as it involves building auxiliary lines and curve projections.To improve the efficiency and general applicability of the risk angle calculation,a boundary discretization method is developed that involves discretizing the geometry of the target part/structure into node points and calculating the risk angles numerically by iterating a particular algorithm over each node point.The improved efficiency and excellent accuracy for the developed algorithm was validated through a comparison with manual solutions for the hazard quantification of the engine nacelle structures of a passenger aircraft using the guidance in AC20-128A.To further demonstrate the applicability of the boundary discretization method,the proposed algorithm was used to examine the influence of the target size and the distance between the target and rotor on the hazard probability.展开更多
One specific issue associated with the wind turbine is how to manage and adjust the rotor speed and pitch angle in the turbine with the wind increasing to achieve the maximum power extraction from the wind. The aim of...One specific issue associated with the wind turbine is how to manage and adjust the rotor speed and pitch angle in the turbine with the wind increasing to achieve the maximum power extraction from the wind. The aim of this paper is to provide a summary study of the impact of related controls and operating strategies on the wind turbine which mean how parameters affect the wind turbine operation. The software of “GH bladed” produced by GL Garrad Hassan will be used to model wind turbine and to perform the analysis. Following two strategies, control of rotor speed and control of blade pitch angle, are applied to the model of the wind turbine to see how output power are adjusted and optimized. The final part proposes the operating strategy of the wind turbine to understand the running procedure of wind turbine inside.展开更多
Transient analysis of 33 KV power transmission line stability of Egi communi-ty is considered in this research work with the aim of reducing the frequency of fault occurrence and voltage collapse in the network. The s...Transient analysis of 33 KV power transmission line stability of Egi communi-ty is considered in this research work with the aim of reducing the frequency of fault occurrence and voltage collapse in the network. The supply is taken from Egi generating station located at Total Nigeria Limited Gas Plant Obite at voltage level of 33 KV to Egi communities. This work focuses on the transient nature of network stability since transient fault is the most dangerous in elec-trical systems. The swinging of the generator rotor in the event of transient three-phase short circuit fault can be monitored by the circuit breakers and the protective relays which causes mal-functioning of the circuit breakers and pro-tective relays leading to abnormal behavior of the network. Therefore, data obtained from the power station were used as a case study of Independent Power Producer (IPP) in Nigeria. For investigation of the power angle, angular velocity, rotor angle differential changes, and angular velocity differential changes, an electrical transient analyzer tool was employed (ETap version 16.00) for circuit breaker and protective relay time setting of (0.00, 0.05, 0.10, 0.15, 0.20, 0.25, 0.30, 0.35, 0.40, 0.45, 0.50, 0.55, 0.60). The work used the Trapezoidal numerical technique for data analysis. The graphs were plotted using Matlab R2015a and the results obtained showed that when a symmetrical three-phase short circuit fault occur at one or any of the feeders, the fault must be cleared as quick as possible through the coordination of the circuit breakers and protective relays. For this research work, 17 cycles corresponding to relay time setting of t = 0.34 s were recommended and at each cycle, changes in time with respect to changes in rotor angle, angular velocity, rotor differential and angular velocity differential were calculated on the power network simultaneously. The results demonstrated that the Trapezoidal method is numerically stable, accurate and has faster respond time when compared to Modified Euler and swing equat展开更多
基金supported by the National Natural Science Foundation of China(No.51706187)。
文摘Uncontained Engine Rotor Failure(UERF)can cause a catastrophic failure of an aircraft,and the quantitative assessment of the hazards related to UERF is a very important part of safety analysis.However,the procedure for hazard quantification of UERF recommended by the Federal Aviation Administration in advisory circular AC20-128A is cumbersome,as it involves building auxiliary lines and curve projections.To improve the efficiency and general applicability of the risk angle calculation,a boundary discretization method is developed that involves discretizing the geometry of the target part/structure into node points and calculating the risk angles numerically by iterating a particular algorithm over each node point.The improved efficiency and excellent accuracy for the developed algorithm was validated through a comparison with manual solutions for the hazard quantification of the engine nacelle structures of a passenger aircraft using the guidance in AC20-128A.To further demonstrate the applicability of the boundary discretization method,the proposed algorithm was used to examine the influence of the target size and the distance between the target and rotor on the hazard probability.
文摘One specific issue associated with the wind turbine is how to manage and adjust the rotor speed and pitch angle in the turbine with the wind increasing to achieve the maximum power extraction from the wind. The aim of this paper is to provide a summary study of the impact of related controls and operating strategies on the wind turbine which mean how parameters affect the wind turbine operation. The software of “GH bladed” produced by GL Garrad Hassan will be used to model wind turbine and to perform the analysis. Following two strategies, control of rotor speed and control of blade pitch angle, are applied to the model of the wind turbine to see how output power are adjusted and optimized. The final part proposes the operating strategy of the wind turbine to understand the running procedure of wind turbine inside.
文摘Transient analysis of 33 KV power transmission line stability of Egi communi-ty is considered in this research work with the aim of reducing the frequency of fault occurrence and voltage collapse in the network. The supply is taken from Egi generating station located at Total Nigeria Limited Gas Plant Obite at voltage level of 33 KV to Egi communities. This work focuses on the transient nature of network stability since transient fault is the most dangerous in elec-trical systems. The swinging of the generator rotor in the event of transient three-phase short circuit fault can be monitored by the circuit breakers and the protective relays which causes mal-functioning of the circuit breakers and pro-tective relays leading to abnormal behavior of the network. Therefore, data obtained from the power station were used as a case study of Independent Power Producer (IPP) in Nigeria. For investigation of the power angle, angular velocity, rotor angle differential changes, and angular velocity differential changes, an electrical transient analyzer tool was employed (ETap version 16.00) for circuit breaker and protective relay time setting of (0.00, 0.05, 0.10, 0.15, 0.20, 0.25, 0.30, 0.35, 0.40, 0.45, 0.50, 0.55, 0.60). The work used the Trapezoidal numerical technique for data analysis. The graphs were plotted using Matlab R2015a and the results obtained showed that when a symmetrical three-phase short circuit fault occur at one or any of the feeders, the fault must be cleared as quick as possible through the coordination of the circuit breakers and protective relays. For this research work, 17 cycles corresponding to relay time setting of t = 0.34 s were recommended and at each cycle, changes in time with respect to changes in rotor angle, angular velocity, rotor differential and angular velocity differential were calculated on the power network simultaneously. The results demonstrated that the Trapezoidal method is numerically stable, accurate and has faster respond time when compared to Modified Euler and swing equat