This work presents a method to solve the weak solubility of zinc chloride(ZnCl_2) in the ethanol by adding some reasonable water into an ethanol electrolyte containing ZnCl_2 and myristic acid(CH_3(CH_2)_(12)COOH).A r...This work presents a method to solve the weak solubility of zinc chloride(ZnCl_2) in the ethanol by adding some reasonable water into an ethanol electrolyte containing ZnCl_2 and myristic acid(CH_3(CH_2)_(12)COOH).A rapid one-step electrodeposition process was developed to fabricate anodic(2.5 min) and cathodic(40 s) superhydrophobic surfaces of copper substrate(contact angle more than 150°) in an aqueous ethanol electrolyte.Morphology,composition,chemical structure and superhydrophobicity of these superhydrophobic surfaces were investigated by SEM,FTIR,XRD,and contact angle measurement,respectively.The results indicate that water ratio of the electrolyte can reduce the required deposition time,superhydrophobic surface needs over 30 min with anhydrous electrolyte,while it needs only 2.5 min with electrolyte including 10 mL water,and the maximum contact angle of anodic surface is 166° and that of the cathodic surface is 168°.Two copper electrode surfaces have different reactions in the process of electrodeposition time,and the anodic copper surface covers copper myristate(Cu[CH_3(CH_2)_(12)COO]_2) and cupric chloride(CuCl);while,zinc myristate(Zn[CH_3(CH_2)_(12)COO]_2) and pure zinc(Zn) appear on the cathodic surface.展开更多
详细分析了某铝厂200 k A大型曲面阴极铝电解槽角部阳极长角的原因,从温度、电流分布多个角度出发,找出200 k A大型曲面阴极铝电解槽角部阳极长角的规律,并提出了严格监督检查制度,建立角部阳极数据库,强化电压和电流强度,调整工艺参数...详细分析了某铝厂200 k A大型曲面阴极铝电解槽角部阳极长角的原因,从温度、电流分布多个角度出发,找出200 k A大型曲面阴极铝电解槽角部阳极长角的规律,并提出了严格监督检查制度,建立角部阳极数据库,强化电压和电流强度,调整工艺参数等处理措施。展开更多
Current distribution in a drained aluminum reduction cell is critical due to its influence on the current efficiency, electrolysis stability, anodes and cathodes integrity. A finite element model was developed to simu...Current distribution in a drained aluminum reduction cell is critical due to its influence on the current efficiency, electrolysis stability, anodes and cathodes integrity. A finite element model was developed to simulate the electric field in a 75 kA drained aluminum reduction cell. The current distribution and influences of the cathode inclination angle and anode-cathode distance (ACD) were studied. The results show that relatively large horizontal current density appears in the aluminum film, and the maximum value reaches 600 kA/m2. As the cathode inclination angle increases from 2° to 15°, the maximum current density of the metal pad increases by 15%, while the maximum current density of the aluminum-wettable coating layer decreases by 27%. The influence of the ACD on the current distribution is not obvious.展开更多
The spatial structures of magnetic Co nanowire array embedded in anodic aluminium membranes were investigated by grazing incidence small angle X-ray scattering (GISAXS) and conventional small angle X-ray scattering ...The spatial structures of magnetic Co nanowire array embedded in anodic aluminium membranes were investigated by grazing incidence small angle X-ray scattering (GISAXS) and conventional small angle X-ray scattering (SAXS) techniques. Compared with SEM observation, the GISAXS and SAXS measurements can get more overall structural information in a large-area scale. In this study, the two-dimensional GISAXS pattern was well reconstructed by using the IsGISAXS program. The results demonstrate that the hexagonal lattice formed by the Co nanowires is distorted (a ≈105 nm, b ≈95 nm). These Co nanowires are isolated into many structure domains with different orientations with a size of about 2 p_m. The SAXS results have also confirmed that the nanopore structures in the AAM can be retained after depositing Co nanowires although the Co nanowires can not completely but only just fill up the nanopores. These results are helpful for understanding the global structure of the Co nanowire array.展开更多
基金Projects(11304243,11102164)supported by the National Natural Science Foundation of ChinaProject(2014JQ1039)supported by the Natural Science Foundation of Shannxi Province,China+3 种基金Project(12JK0966)supported by the Shaanxi Provincial Education Department,ChinaProject(2013QDJ037)supported by the Xi’an University of Science and Technology Dr Scientific Research Fund,ChinaProject(3102016ZY027)supported by the Fundamental Research Funds for the Central Universities of ChinaProject(13GH014602)supported by the Program of New Staff and Research Area Project of NPU,China
文摘This work presents a method to solve the weak solubility of zinc chloride(ZnCl_2) in the ethanol by adding some reasonable water into an ethanol electrolyte containing ZnCl_2 and myristic acid(CH_3(CH_2)_(12)COOH).A rapid one-step electrodeposition process was developed to fabricate anodic(2.5 min) and cathodic(40 s) superhydrophobic surfaces of copper substrate(contact angle more than 150°) in an aqueous ethanol electrolyte.Morphology,composition,chemical structure and superhydrophobicity of these superhydrophobic surfaces were investigated by SEM,FTIR,XRD,and contact angle measurement,respectively.The results indicate that water ratio of the electrolyte can reduce the required deposition time,superhydrophobic surface needs over 30 min with anhydrous electrolyte,while it needs only 2.5 min with electrolyte including 10 mL water,and the maximum contact angle of anodic surface is 166° and that of the cathodic surface is 168°.Two copper electrode surfaces have different reactions in the process of electrodeposition time,and the anodic copper surface covers copper myristate(Cu[CH_3(CH_2)_(12)COO]_2) and cupric chloride(CuCl);while,zinc myristate(Zn[CH_3(CH_2)_(12)COO]_2) and pure zinc(Zn) appear on the cathodic surface.
基金Project(2005CB623703) supported by the National Basic Research Program of China
文摘Current distribution in a drained aluminum reduction cell is critical due to its influence on the current efficiency, electrolysis stability, anodes and cathodes integrity. A finite element model was developed to simulate the electric field in a 75 kA drained aluminum reduction cell. The current distribution and influences of the cathode inclination angle and anode-cathode distance (ACD) were studied. The results show that relatively large horizontal current density appears in the aluminum film, and the maximum value reaches 600 kA/m2. As the cathode inclination angle increases from 2° to 15°, the maximum current density of the metal pad increases by 15%, while the maximum current density of the aluminum-wettable coating layer decreases by 27%. The influence of the ACD on the current distribution is not obvious.
基金Supported by National Natural Science Foundation of China (10835008)Knowledge Innovation Program of Chinese Academy of Sciences (KJCX3-SYW-N8)Momentous Equipment Program of Chinese Academy of Sciences (YZ200829)
文摘The spatial structures of magnetic Co nanowire array embedded in anodic aluminium membranes were investigated by grazing incidence small angle X-ray scattering (GISAXS) and conventional small angle X-ray scattering (SAXS) techniques. Compared with SEM observation, the GISAXS and SAXS measurements can get more overall structural information in a large-area scale. In this study, the two-dimensional GISAXS pattern was well reconstructed by using the IsGISAXS program. The results demonstrate that the hexagonal lattice formed by the Co nanowires is distorted (a ≈105 nm, b ≈95 nm). These Co nanowires are isolated into many structure domains with different orientations with a size of about 2 p_m. The SAXS results have also confirmed that the nanopore structures in the AAM can be retained after depositing Co nanowires although the Co nanowires can not completely but only just fill up the nanopores. These results are helpful for understanding the global structure of the Co nanowire array.