The multi-piped freezing method is usually applied in artificial ground freezing (AGF) projects to fulfill special construction requirements, such as two-, three-, or four-piped freezing. Based on potential superpos...The multi-piped freezing method is usually applied in artificial ground freezing (AGF) projects to fulfill special construction requirements, such as two-, three-, or four-piped freezing. Based on potential superposition theory, this paper gives analytical solutions to steady-state frozen temperature for two, three, and four freezing pipes with different temperatures and arranged at random. Specific solutions are derived for some particular arrangements, such as three freezing pipes in a linear arrangement with equal or unequal spacing, right and isosceles triangle arrangements, four freezing pipes in a linear arrangement with equal spacing, and rhombus and rectangle arrangements. A comparison between the analytical solutions and numerical thermal analysis shows that the analytical solutions are sufficiently precise. As a part of the theory of AGF, the analytical solutions of temperature fields for multi-piped freezing with arbitrary layouts and different temperatures of freezing pipes are approached for the first time.展开更多
The geometric structures of an Nit radical in different external electric fields are optimized by using the density functional B3P86/cc-PVSZ method, and the bond lengths, dipole moments, vibration frequencies and IR s...The geometric structures of an Nit radical in different external electric fields are optimized by using the density functional B3P86/cc-PVSZ method, and the bond lengths, dipole moments, vibration frequencies and IR spectrum are obtained. The potential energy curves are gained by the CCSD (T) method with the same basis set. These results indicate that the physical property parameters and potential energy curves may change with the external electric field, especially in the reverse direction electric field. The potential energy function of zero field is fitted by the Morse potential, and the fitting parameters are in good accordance with the experimental data. The potential energy functions of different external electric fields are fitted adopting the constructed potential model. The fitted critical dissociation electric parameters are shown to be consistent with the numerical calculation, and the relative errors are only 0.27% and 6.61%, hence the constructed model is reliable and accurate. The present results provide an important reference for further study of the molecular spectrum, dynamics and molecular cooling with Stark effect.展开更多
The present work is to construct the potential energy function of isotopic molecules. The so-called molecular potential energy function is the electronic energy function under Born-Oppenheimer approximation,in which t...The present work is to construct the potential energy function of isotopic molecules. The so-called molecular potential energy function is the electronic energy function under Born-Oppenheimer approximation,in which the nuclear motions(translational,rotational and vibration motions) are not included,therefore,its nuclear vibration motion and isotopic effect need to be considered. Based on group theory and atomic and molecular reactive statics(AMRS),the reasonable dissociation limits of D2O(1A1)are determined,its equilibrium geometry and dissociation energy are calculated by density-functional theory(DFT) B3lyp,and then,using the many-body expansion method the potential energy function of D2O(1A1) is obtained for the first time. The potential contours are drawn,in which it is found that the reactive channel D + OD→D2O has no threshold energy,so it is a free radical reaction. But the reactive channel O + DD→D2O has a saddle point. The study of collision for D2O(1A1) is under way.展开更多
Potential energies of LiS(^2∏), LiS-(^1E+) and LiS+ (^3E-) are calculated by using the multi- reference configuration interaction method including Davidson correction and the augmented correlation-consistent ...Potential energies of LiS(^2∏), LiS-(^1E+) and LiS+ (^3E-) are calculated by using the multi- reference configuration interaction method including Davidson correction and the augmented correlation-consistent basis sets aug-cc-PV(X+d)Z (X=T, Q). Such obtained potential energies are subsequently extrapolated to the complete basis set limit. Both the core-valence correction and the relativistic effect are also considered. The analytical potential energy functions are then obtained by fitting such accurate energies utilizing a least-squares fitting procedure. By using such analytical potential energy functions, we obtain the accurate spectroscopic parameters, complete set of vibrational levels and classical turning points. The present results are compared well with the experimental and other theoretical work.展开更多
Multi-reference configuration interaction is used to produce potential energy curves (PECs) for the excited B1FI state of KH molecule. To investigate the correlation effect of core-valence electrons, five schemes ar...Multi-reference configuration interaction is used to produce potential energy curves (PECs) for the excited B1FI state of KH molecule. To investigate the correlation effect of core-valence electrons, five schemes are employed which include the different correlated electrons and different active spaces. The PECs are fitted into analytical potential energy functions (APEFs). The spectroscopic parameters, ro-vibrational levels, and transition frequencies are determined based on the APEFs and compared with available experimental and theoretical data. The molecular properties for B1II obtained in this letter, which are better than those available in literature, can be reproduced with calculations using the suitable correlated electrons and active space of orbitals.展开更多
基金Project supported by the National Natural Science Foundation of China (Nos. 51178336 and 51478340), the Natural Science Foundation of Zhejiang Province, China (No. LZ13E080002), and the China Ministry of Communications Construction Science & Technology Projects (No. 2013318R11300)
文摘The multi-piped freezing method is usually applied in artificial ground freezing (AGF) projects to fulfill special construction requirements, such as two-, three-, or four-piped freezing. Based on potential superposition theory, this paper gives analytical solutions to steady-state frozen temperature for two, three, and four freezing pipes with different temperatures and arranged at random. Specific solutions are derived for some particular arrangements, such as three freezing pipes in a linear arrangement with equal or unequal spacing, right and isosceles triangle arrangements, four freezing pipes in a linear arrangement with equal spacing, and rhombus and rectangle arrangements. A comparison between the analytical solutions and numerical thermal analysis shows that the analytical solutions are sufficiently precise. As a part of the theory of AGF, the analytical solutions of temperature fields for multi-piped freezing with arbitrary layouts and different temperatures of freezing pipes are approached for the first time.
基金Supported by the National Natural Science Foundation of China under Grant Nos 11147158 and 11264020the Jiangxi Province Natural Science Foundation under Grant No 2010GQW0031the Jiangxi Province Scientific Research Program of the Education Bureau under Grant No GJJ12483
文摘The geometric structures of an Nit radical in different external electric fields are optimized by using the density functional B3P86/cc-PVSZ method, and the bond lengths, dipole moments, vibration frequencies and IR spectrum are obtained. The potential energy curves are gained by the CCSD (T) method with the same basis set. These results indicate that the physical property parameters and potential energy curves may change with the external electric field, especially in the reverse direction electric field. The potential energy function of zero field is fitted by the Morse potential, and the fitting parameters are in good accordance with the experimental data. The potential energy functions of different external electric fields are fitted adopting the constructed potential model. The fitted critical dissociation electric parameters are shown to be consistent with the numerical calculation, and the relative errors are only 0.27% and 6.61%, hence the constructed model is reliable and accurate. The present results provide an important reference for further study of the molecular spectrum, dynamics and molecular cooling with Stark effect.
基金Supported by the National Natural Science Foundation of China (Grant No. NSAF10676022)
文摘The present work is to construct the potential energy function of isotopic molecules. The so-called molecular potential energy function is the electronic energy function under Born-Oppenheimer approximation,in which the nuclear motions(translational,rotational and vibration motions) are not included,therefore,its nuclear vibration motion and isotopic effect need to be considered. Based on group theory and atomic and molecular reactive statics(AMRS),the reasonable dissociation limits of D2O(1A1)are determined,its equilibrium geometry and dissociation energy are calculated by density-functional theory(DFT) B3lyp,and then,using the many-body expansion method the potential energy function of D2O(1A1) is obtained for the first time. The potential contours are drawn,in which it is found that the reactive channel D + OD→D2O has no threshold energy,so it is a free radical reaction. But the reactive channel O + DD→D2O has a saddle point. The study of collision for D2O(1A1) is under way.
基金This work was supported by the National Natural Science Foundation of China (No.11304185), Taishan scholar project of Shandong Province, China Postdoctoral Science Foundation (No.2014M561957), and Post-doctoral Innovation Project of Shandong Province (No.201402013), Shandong Provincial Natural Science Foundation (No.ZR2014AM022). The authors gratefully acknowledge Dr. S. Li for useful discussion in this work.
文摘Potential energies of LiS(^2∏), LiS-(^1E+) and LiS+ (^3E-) are calculated by using the multi- reference configuration interaction method including Davidson correction and the augmented correlation-consistent basis sets aug-cc-PV(X+d)Z (X=T, Q). Such obtained potential energies are subsequently extrapolated to the complete basis set limit. Both the core-valence correction and the relativistic effect are also considered. The analytical potential energy functions are then obtained by fitting such accurate energies utilizing a least-squares fitting procedure. By using such analytical potential energy functions, we obtain the accurate spectroscopic parameters, complete set of vibrational levels and classical turning points. The present results are compared well with the experimental and other theoretical work.
基金supported by the National Natural Science Foundation of China (Nos. 10974078,10674114,and 10874104)the Research Fund for the Doctoral Program of Higher Education of China (No.20093704110001)
文摘Multi-reference configuration interaction is used to produce potential energy curves (PECs) for the excited B1FI state of KH molecule. To investigate the correlation effect of core-valence electrons, five schemes are employed which include the different correlated electrons and different active spaces. The PECs are fitted into analytical potential energy functions (APEFs). The spectroscopic parameters, ro-vibrational levels, and transition frequencies are determined based on the APEFs and compared with available experimental and theoretical data. The molecular properties for B1II obtained in this letter, which are better than those available in literature, can be reproduced with calculations using the suitable correlated electrons and active space of orbitals.