在SIP(System In a Package)系统中集成具有LVDS(Low-Voltage Differential Signal)接口的多通道高速模数转换器(Analog-to-Digital Converter,ADC)时,面临不同LVDS输出通道延时不同所导致的数据采集错误的问题,为此设计了一个多通道自...在SIP(System In a Package)系统中集成具有LVDS(Low-Voltage Differential Signal)接口的多通道高速模数转换器(Analog-to-Digital Converter,ADC)时,面临不同LVDS输出通道延时不同所导致的数据采集错误的问题,为此设计了一个多通道自适应LVDS接收器。通过采用数据时钟恢复技术产生一个多相位的采样时钟,并结合ADC的测试模式来确认每一个通道的采样相位,能够自动对每一个通道的延时分别进行调整,以达到对齐各通道采样相位点,保证数据正确采集的目的。最后,基于先进CMOS工艺进行了接收器的设计、仿真、后端设计实现和流片测试,仿真和流片后的板级测试结果均表明该接收器能够对通道延迟进行自动调节以对齐采样相位,且最大的采样相位调节范围为±3 bit,信噪比大于65 dB,满足了设计要求和应用需求。展开更多
We considered the physiological mechanisms of functioning of the retina’s neural network. It is marked that the primary function of a neural network is an analog-to-digital conversion of the receptor potential of pho...We considered the physiological mechanisms of functioning of the retina’s neural network. It is marked that the primary function of a neural network is an analog-to-digital conversion of the receptor potential of photoreceptor into the pulse-to-digital signal to ganglion cells. We showed the role of different types of neurons in the work of analog-to-digital converter. We gave the equivalent circuit of this converter. We researched the mechanism of the numeric coding of the receptor potential of the photoreceptor.展开更多
This paper makes a review of state-of-the- arts designs of successive-approximation register analog-to-digital converters (SAR ADCs). Methods and technique specifications are collected in view of innovative ideas. A...This paper makes a review of state-of-the- arts designs of successive-approximation register analog-to-digital converters (SAR ADCs). Methods and technique specifications are collected in view of innovative ideas. At the end of this paper, a design example is given to illustrate the procedure to design an SAR ADC. A new method, which extends the width of the internal clock, is also proposed to facilitate different sampling frequencies, which provides more time for the digital-to-analog convert (DAC) and comparator to settle. The 10 bit ADC is simulated in 0.13 μm CMOS process technology. The signal-to-noise and distortion ratio (SNDR) is 54.41 dB at a 10 MHz input with a 50 MS/s sampling rate, and the power is 330 μW.展开更多
文摘在SIP(System In a Package)系统中集成具有LVDS(Low-Voltage Differential Signal)接口的多通道高速模数转换器(Analog-to-Digital Converter,ADC)时,面临不同LVDS输出通道延时不同所导致的数据采集错误的问题,为此设计了一个多通道自适应LVDS接收器。通过采用数据时钟恢复技术产生一个多相位的采样时钟,并结合ADC的测试模式来确认每一个通道的采样相位,能够自动对每一个通道的延时分别进行调整,以达到对齐各通道采样相位点,保证数据正确采集的目的。最后,基于先进CMOS工艺进行了接收器的设计、仿真、后端设计实现和流片测试,仿真和流片后的板级测试结果均表明该接收器能够对通道延迟进行自动调节以对齐采样相位,且最大的采样相位调节范围为±3 bit,信噪比大于65 dB,满足了设计要求和应用需求。
文摘We considered the physiological mechanisms of functioning of the retina’s neural network. It is marked that the primary function of a neural network is an analog-to-digital conversion of the receptor potential of photoreceptor into the pulse-to-digital signal to ganglion cells. We showed the role of different types of neurons in the work of analog-to-digital converter. We gave the equivalent circuit of this converter. We researched the mechanism of the numeric coding of the receptor potential of the photoreceptor.
基金supported in part by the National Natural Science Foundation of China under Grant No.61006027the New Century Excellent Talents Program of the Ministry of Education of China under Grant No.NCET-10-0297the Fundamental Research Funds for Central Universities under Grant No.ZYGX2012J003
文摘This paper makes a review of state-of-the- arts designs of successive-approximation register analog-to-digital converters (SAR ADCs). Methods and technique specifications are collected in view of innovative ideas. At the end of this paper, a design example is given to illustrate the procedure to design an SAR ADC. A new method, which extends the width of the internal clock, is also proposed to facilitate different sampling frequencies, which provides more time for the digital-to-analog convert (DAC) and comparator to settle. The 10 bit ADC is simulated in 0.13 μm CMOS process technology. The signal-to-noise and distortion ratio (SNDR) is 54.41 dB at a 10 MHz input with a 50 MS/s sampling rate, and the power is 330 μW.