Recently,bidirectional quantum teleportation has attracted a great deal of research attention.However,existing bidirectional teleportation schemes are normally discussed on the basis of perfect quantum environments.In...Recently,bidirectional quantum teleportation has attracted a great deal of research attention.However,existing bidirectional teleportation schemes are normally discussed on the basis of perfect quantum environments.In this paper,we first put forward a bidirectional teleportation scheme to transport three-qubit Greenberger-Horne-Zeilinger(GHZ) states based on controled-not(CNOT) operation and single-qubit measurement.Then,we generalize it to the teleportation of multi-qubit GHZ states.Further,we discuss the influence of quantum noise on our scheme by the example of an amplitude damping channel,then we obtain the fidelity of the teleportation.Finally,we utilize the weak measurement and the corresponding reversing measurement to protect the quantum entanglement,which shows an effective enhancement of the teleportation fidelity.展开更多
Passive jamming is believed to have very good potential in countermeasure community.In this paper,a passive angular blinking jamming method based on electronically controlled corner reflectors is proposed.The amplitud...Passive jamming is believed to have very good potential in countermeasure community.In this paper,a passive angular blinking jamming method based on electronically controlled corner reflectors is proposed.The amplitude of the incident wave can be modulated by switching the corner reflector between the penetration state and the reflection state,and the ensemble of multiple corner reflectors with towing rope can result in complex angle decoying effects.Dependency of the decoying effect on corner reflectors’radar cross section and positions are analyzed and simulated.Results show that the angle measured by a monopulse radar can be significantly interfered by this method while the automatic tracking is employed.展开更多
基金Project supported by the National Natural Science Foundation of China(Grant No.61172071)the Scientific Research Program Funded by Shaanxi Provincial Education Department,China(Grant No.16JK1711)+1 种基金the International Scientific Cooperation Program of Shaanxi Province,China(Grant No.2015KW-013)the Natural Science Foundation Research Project of Shaanxi Province,China(Grant No.2016JQ6033)
文摘Recently,bidirectional quantum teleportation has attracted a great deal of research attention.However,existing bidirectional teleportation schemes are normally discussed on the basis of perfect quantum environments.In this paper,we first put forward a bidirectional teleportation scheme to transport three-qubit Greenberger-Horne-Zeilinger(GHZ) states based on controled-not(CNOT) operation and single-qubit measurement.Then,we generalize it to the teleportation of multi-qubit GHZ states.Further,we discuss the influence of quantum noise on our scheme by the example of an amplitude damping channel,then we obtain the fidelity of the teleportation.Finally,we utilize the weak measurement and the corresponding reversing measurement to protect the quantum entanglement,which shows an effective enhancement of the teleportation fidelity.
基金supported by the Equipment Pre-research Project(GK202002A020068)。
文摘Passive jamming is believed to have very good potential in countermeasure community.In this paper,a passive angular blinking jamming method based on electronically controlled corner reflectors is proposed.The amplitude of the incident wave can be modulated by switching the corner reflector between the penetration state and the reflection state,and the ensemble of multiple corner reflectors with towing rope can result in complex angle decoying effects.Dependency of the decoying effect on corner reflectors’radar cross section and positions are analyzed and simulated.Results show that the angle measured by a monopulse radar can be significantly interfered by this method while the automatic tracking is employed.