基于蜂窝的窄带物联网NB-IoT(Narrow Band Internet of Things)技术发展迅猛,随着节点数目的急剧增加及窄带无线网络的开放性,其安全问题面临严重的挑战。针对NB-IoT的不可信或窃听节点会带来严重安全威胁的问题,利用其上下行信道状态...基于蜂窝的窄带物联网NB-IoT(Narrow Band Internet of Things)技术发展迅猛,随着节点数目的急剧增加及窄带无线网络的开放性,其安全问题面临严重的挑战。针对NB-IoT的不可信或窃听节点会带来严重安全威胁的问题,利用其上下行信道状态可知和半双工的特性,提出利用中继节点地放大转发、协作拥塞及联合协作保障物理层安全。放大转发节点对源信号进行放大和转发,协作拥塞节点发射干扰信号,调整波束赋形因子和功率使干扰到达目的节点为零而到达窃听者非零。仿真表明,中继节点所带来的分集增益能显著改善接收节点的信号质量,提升5倍安全容量,在不需要加密算法的情况下,确保窃听者无法获取有用信息,保证信息传输的安全。安全容量是指合法接收端可以正确接收,而窃听者即无法获取信息的最大可达通信速率。展开更多
In this paper a new method to improve performance of cooperative underwater acoustic (UWA) sensor networks will be introduced. The method is based on controlling and optimizing carrier frequencies which are used in da...In this paper a new method to improve performance of cooperative underwater acoustic (UWA) sensor networks will be introduced. The method is based on controlling and optimizing carrier frequencies which are used in data links between network nods. In UWA channels Pathloss and noise power spectrum density (psd) are related to carrier frequency. Therefore, unlike radio communications, in UWA Communications signal to noise ratio (SNR) is related to frequency besides propagation link length. In such channels an optimum frequency in whole frequency band and link lengths cannot be found. In Cooperative transmission, transmitter sends one copy of transmitted data packets to relay node. Then relay depending on cooperation scheme, amplifies or decodes each data packet and retransmit it to destination. Receiver uses and combines both received signals to estimate transmitted data. This paper wants to propose a new method to decrease network power consumptions by controlling and sub-optimizing transmission frequency based on link length. For this purpose, underwater channel parameters is simulated and analyzed in 1km to 10km lengths (midrange channel). Then link lengths sub categorized and in each category, optimum frequency is computed. With these sub optimum frequencies, sensors and base station can adaptively control their carrier frequencies based on link length and decrease network’s power consumptions. Finally Different Cooperative transmission schemes “Decode and Forward (DF)” and “Amplify and Forward (AF)”, are simulated in UWA wireless Sensor network with and without the new method. In receiver maximum ratio combiner (MRC) is used to combining received signals and making data estimations. Simulations show that the new method, called AFC cooperative UWA communication, can improve performance of underwater acoustic wireless sensor networks up to 40.14%.展开更多
This paper studies the resource allocation for a multi-user two-way amplify-and-forward (AF) relay network over orthogonal frequency-division multiplexing (OFDM) technology, where all users communicate with their ...This paper studies the resource allocation for a multi-user two-way amplify-and-forward (AF) relay network over orthogonal frequency-division multiplexing (OFDM) technology, where all users communicate with their pre-assigned partners. Using convex optimization techniques, an optimal solution to minimize the total transmit power while satisfy each user-pair's data rate requirements is proposed. We divide the resource allocation problem into two subproblems: (1) power optimization within user-pair and relay in each subcarrier. (2) optimal subcarrier allocation and sum power assignment among N parallel OFDM subcarriers. Closed-form expressions of the power among user-pair and relay can be obtained in subproblem (1), and so the proposed algorithm decreases the variable dimensionality of the objective function to reduce the complexity of this optimization problem. To solve it, a three-step suboptimal approach is proposed to assign the resources to user-pairs: Firstly, decompose each user-pair into two sub user-pairs which have one-way and two-way relaying transmission modes. Secondly, allocate the subcarriers to the new mode user-pairs and assign the transmit power to each carrier. Thirdly, distribute the assigned power to three nodes allocated in the subcarrier. Simulation results demonstrate the significant power is saved with the proposed solutions, as compared to a fixed subcarrier allocation.展开更多
This paper aims to avoid the interference imposed by the secondary user on a primary user in Cognitive Radio Network (CRN). In CRN, the interference from secondary user enforced on primary user mainly depends on spect...This paper aims to avoid the interference imposed by the secondary user on a primary user in Cognitive Radio Network (CRN). In CRN, the interference from secondary user enforced on primary user mainly depends on spectral interval between primary and secondary systems. Moreover, it also depends on the power allocated to the secondary user. In order to avoid interference imposed by secondary user on primary user, a Hybrid Relaying Protocol for Joint Power and Subcarrier Allocation for Orthogonal Frequency Division Multiplexing (OFDM) based Cognitive Radio Networks is proposed. In hybrid relaying protocol, a secondary user uses amplify and forward (AF) protocol and decode and forward (DF) protocol based on the requirement to maximize network throughput. A greedy algorithm is proposed for the selection of relay to get the optimal solution. Moreover, an efficient hybrid power and subcarrier algorithm is used by considering interference constraint imposed by cognitive network to the primary user.展开更多
In this paper, we investigate power allocation problem with the use of transmit beamforming in a dual hop MISO (multiple input single output) relay channel. We consider either amplify and forward (AF) or decode and fo...In this paper, we investigate power allocation problem with the use of transmit beamforming in a dual hop MISO (multiple input single output) relay channel. We consider either amplify and forward (AF) or decode and forward (DF) cooperative protocols at the relay and optimize the power allocated to the relay and the source, under total transmit power constraint, to minimize the bit error rate (BER) of relaying system. Cooperative communication is viewed as a method for increasing diversity gain and reducing end to end path loss. The use of relay can create a virtual antenna array so that it allows users to exploit the advantages of multiple input multiple output (MIMO) techniques. In this work, we solve cooperative ratio, which is defined as the ratio power used for cooperative transmission over the total power. This approach is then compared to an equal power assignment method and its performance enhancement is verified by simulation results.展开更多
IEEE 802.16j MMR WiMAX network introduces multi-hop relay architecture, which involves cooperative relay stations focusing on increasing the network throughput and coverage. Relay selection algorithms can be used to c...IEEE 802.16j MMR WiMAX network introduces multi-hop relay architecture, which involves cooperative relay stations focusing on increasing the network throughput and coverage. Relay selection algorithms can be used to choose the optimal relay, which help in reducing the computational complexity during the signal processing operation of the wireless network. In this research work, a conventional Amplify-Forward (AF)/Decode-Forward (DF) assisted multi-relay IEEE 802.16j WiMAX network is considered. The effects of relay selection algorithms on the performance metrics such as Symbol Error Rate (SER) and channel capacity are investigated in detail through simulation-based study. Further, the performance of this network utilizing the proposed relay selection algo- rithms, namely threshold based max_rain and threshold based harmonic mean of SNR, are compared with the existing max_rain and harmonic mean of SNR based algorithms. Standard diversity combining techniques such as Maximal Ratio Combining (MRC) and Selection Combining (SC) are used for combining the transmitted signal at the receiver. In addition, the impact of relay locations on the performance metrics are explored. It is observed that both the proposed threshold based max_min and threshold based harmonic mean of SNR based relay selection algorithms outperform the max_rain and harmonic mean of SNR based algorithms, as both the SER and channel capacity for the considered multi-relay WiMAX network is improved significantly. Further, this extensive study and analysis will be beneficial for the design of MMR WiMAX networks.展开更多
文摘基于蜂窝的窄带物联网NB-IoT(Narrow Band Internet of Things)技术发展迅猛,随着节点数目的急剧增加及窄带无线网络的开放性,其安全问题面临严重的挑战。针对NB-IoT的不可信或窃听节点会带来严重安全威胁的问题,利用其上下行信道状态可知和半双工的特性,提出利用中继节点地放大转发、协作拥塞及联合协作保障物理层安全。放大转发节点对源信号进行放大和转发,协作拥塞节点发射干扰信号,调整波束赋形因子和功率使干扰到达目的节点为零而到达窃听者非零。仿真表明,中继节点所带来的分集增益能显著改善接收节点的信号质量,提升5倍安全容量,在不需要加密算法的情况下,确保窃听者无法获取有用信息,保证信息传输的安全。安全容量是指合法接收端可以正确接收,而窃听者即无法获取信息的最大可达通信速率。
文摘In this paper a new method to improve performance of cooperative underwater acoustic (UWA) sensor networks will be introduced. The method is based on controlling and optimizing carrier frequencies which are used in data links between network nods. In UWA channels Pathloss and noise power spectrum density (psd) are related to carrier frequency. Therefore, unlike radio communications, in UWA Communications signal to noise ratio (SNR) is related to frequency besides propagation link length. In such channels an optimum frequency in whole frequency band and link lengths cannot be found. In Cooperative transmission, transmitter sends one copy of transmitted data packets to relay node. Then relay depending on cooperation scheme, amplifies or decodes each data packet and retransmit it to destination. Receiver uses and combines both received signals to estimate transmitted data. This paper wants to propose a new method to decrease network power consumptions by controlling and sub-optimizing transmission frequency based on link length. For this purpose, underwater channel parameters is simulated and analyzed in 1km to 10km lengths (midrange channel). Then link lengths sub categorized and in each category, optimum frequency is computed. With these sub optimum frequencies, sensors and base station can adaptively control their carrier frequencies based on link length and decrease network’s power consumptions. Finally Different Cooperative transmission schemes “Decode and Forward (DF)” and “Amplify and Forward (AF)”, are simulated in UWA wireless Sensor network with and without the new method. In receiver maximum ratio combiner (MRC) is used to combining received signals and making data estimations. Simulations show that the new method, called AFC cooperative UWA communication, can improve performance of underwater acoustic wireless sensor networks up to 40.14%.
基金supported by the National Natural Science Foundation of China (6035003,60572149)
文摘This paper studies the resource allocation for a multi-user two-way amplify-and-forward (AF) relay network over orthogonal frequency-division multiplexing (OFDM) technology, where all users communicate with their pre-assigned partners. Using convex optimization techniques, an optimal solution to minimize the total transmit power while satisfy each user-pair's data rate requirements is proposed. We divide the resource allocation problem into two subproblems: (1) power optimization within user-pair and relay in each subcarrier. (2) optimal subcarrier allocation and sum power assignment among N parallel OFDM subcarriers. Closed-form expressions of the power among user-pair and relay can be obtained in subproblem (1), and so the proposed algorithm decreases the variable dimensionality of the objective function to reduce the complexity of this optimization problem. To solve it, a three-step suboptimal approach is proposed to assign the resources to user-pairs: Firstly, decompose each user-pair into two sub user-pairs which have one-way and two-way relaying transmission modes. Secondly, allocate the subcarriers to the new mode user-pairs and assign the transmit power to each carrier. Thirdly, distribute the assigned power to three nodes allocated in the subcarrier. Simulation results demonstrate the significant power is saved with the proposed solutions, as compared to a fixed subcarrier allocation.
文摘This paper aims to avoid the interference imposed by the secondary user on a primary user in Cognitive Radio Network (CRN). In CRN, the interference from secondary user enforced on primary user mainly depends on spectral interval between primary and secondary systems. Moreover, it also depends on the power allocated to the secondary user. In order to avoid interference imposed by secondary user on primary user, a Hybrid Relaying Protocol for Joint Power and Subcarrier Allocation for Orthogonal Frequency Division Multiplexing (OFDM) based Cognitive Radio Networks is proposed. In hybrid relaying protocol, a secondary user uses amplify and forward (AF) protocol and decode and forward (DF) protocol based on the requirement to maximize network throughput. A greedy algorithm is proposed for the selection of relay to get the optimal solution. Moreover, an efficient hybrid power and subcarrier algorithm is used by considering interference constraint imposed by cognitive network to the primary user.
文摘In this paper, we investigate power allocation problem with the use of transmit beamforming in a dual hop MISO (multiple input single output) relay channel. We consider either amplify and forward (AF) or decode and forward (DF) cooperative protocols at the relay and optimize the power allocated to the relay and the source, under total transmit power constraint, to minimize the bit error rate (BER) of relaying system. Cooperative communication is viewed as a method for increasing diversity gain and reducing end to end path loss. The use of relay can create a virtual antenna array so that it allows users to exploit the advantages of multiple input multiple output (MIMO) techniques. In this work, we solve cooperative ratio, which is defined as the ratio power used for cooperative transmission over the total power. This approach is then compared to an equal power assignment method and its performance enhancement is verified by simulation results.
文摘IEEE 802.16j MMR WiMAX network introduces multi-hop relay architecture, which involves cooperative relay stations focusing on increasing the network throughput and coverage. Relay selection algorithms can be used to choose the optimal relay, which help in reducing the computational complexity during the signal processing operation of the wireless network. In this research work, a conventional Amplify-Forward (AF)/Decode-Forward (DF) assisted multi-relay IEEE 802.16j WiMAX network is considered. The effects of relay selection algorithms on the performance metrics such as Symbol Error Rate (SER) and channel capacity are investigated in detail through simulation-based study. Further, the performance of this network utilizing the proposed relay selection algo- rithms, namely threshold based max_rain and threshold based harmonic mean of SNR, are compared with the existing max_rain and harmonic mean of SNR based algorithms. Standard diversity combining techniques such as Maximal Ratio Combining (MRC) and Selection Combining (SC) are used for combining the transmitted signal at the receiver. In addition, the impact of relay locations on the performance metrics are explored. It is observed that both the proposed threshold based max_min and threshold based harmonic mean of SNR based relay selection algorithms outperform the max_rain and harmonic mean of SNR based algorithms, as both the SER and channel capacity for the considered multi-relay WiMAX network is improved significantly. Further, this extensive study and analysis will be beneficial for the design of MMR WiMAX networks.