SNCR(选择性非催化还原)过程试验是在CRF(Cornbustion Research Facility)试验装置上进行的。使用尿素、氨水、(NH4)2CO3、NH4HCO3还原烟气中的NOx,通过雾化喷嘴在CRF炉膛内喷入还原剂。试验结果表明,对于所使用的还原剂随着NH3...SNCR(选择性非催化还原)过程试验是在CRF(Cornbustion Research Facility)试验装置上进行的。使用尿素、氨水、(NH4)2CO3、NH4HCO3还原烟气中的NOx,通过雾化喷嘴在CRF炉膛内喷入还原剂。试验结果表明,对于所使用的还原剂随着NH3/NO摩尔比的增加,NO还原效率逐渐提高;对于尿素、氨水、(NH4)2CO3等还原剂,氨氮比为1-2.5,脱硝效率分别为65%-89%、62%-86%、45%-84%;对于NH4HCO3,氨氮摩尔比0.8-1.5,脱硝效率为46%-73%。不同还原剂的温度窗口不同,适宜尿素进行SNCR过程的反应温度最高,氨水最低。展开更多
To make further studies on the difference of cis-nitenpyram analogues, a series of cis-nitenpyram com- pounds containing a flexible amido segment anchored on tetrahydropyrimidine ring was designed and synthesized. Pre...To make further studies on the difference of cis-nitenpyram analogues, a series of cis-nitenpyram com- pounds containing a flexible amido segment anchored on tetrahydropyrimidine ring was designed and synthesized. Preliminary bioassays indicate that all the analogues exhibit a mortality of 100% at 100 rag/L, and the analogue 4d shows the best activity against Nilaparvata lugens and Myzus persicae, with a mortality of 100% at 4 mg/L (LCs0=0.172 rag/L). The structure activity relationship studies show that insecticidal activities of the analogues are affected by the kinds and size of substituent R. In addition, the molecular docking simulations reveal that compouds 4 with a flexible amido segment on tetrahydropyrimidine ring show their different binding affinities for the nicotinic acetyleholine receptor(nAChR) of insect and compoud 4d shows stronger hydrogen-bonding with nAChR, which may provide the structure-activity relationship observed in vitro.展开更多
A novel soluble and reactive amide-bridged ladderlike polyhydrosiloxane (ALPHS) was first synthesized by an amido H-bonding self-assembled template. ALPHS with molecular weight M^-a = 18300 has very highly ordered l...A novel soluble and reactive amide-bridged ladderlike polyhydrosiloxane (ALPHS) was first synthesized by an amido H-bonding self-assembled template. ALPHS with molecular weight M^-a = 18300 has very highly ordered ladderlike structure, which was confirmed by a sharp resonance absorption peak of [-Si(H)O2/2 ] moiety with the half peak width △1/2 〈 0.5 in^29Si-NMR spectrum. Presence of the reactive Si-H groups gives ALPHS an opportunity to further derive a variety of functional polymers by versatile Si-H reactions such as hydrosilylation, condensation, and so on.展开更多
A novel, reactive amide-bridged ladder polyvinylsiloxane (abbr. LP) with Mn= 2.4×10^4 was synthesized for the first time by means of aryl amide H-bonding self-assembled template. The regularity of LP was charac...A novel, reactive amide-bridged ladder polyvinylsiloxane (abbr. LP) with Mn= 2.4×10^4 was synthesized for the first time by means of aryl amide H-bonding self-assembled template. The regularity of LP was characterized by the XRD, ^29Si NMR and DSC methods. XRD analysis demonstrated the ladder width w = 9.09A and the ladder thickness t = 3.89A, respectively, which are approximately consistent with the molecular simulation-calculated ones: w'= 10.60A and t'= 3.06A. ^29Si NMR displayed a resonance peak with small half peak width, △1/2 - 4 ppm, for the moiety [=Si(Vi)O2/2-]n of LP. Besides, as a collateral evidence, DSC measurement revealed a high glass transition temperature Tg = 225℃, suggesting high stiffness of the ladder main chain of LP.展开更多
Bis (methylcyclopentadienyl) lanthanide amido complex (MeCp) 2YbNPh2 (THF) reacted with n-hexyl isocyanate (n-nexylNCO) in 1:1 molar ratio to give {(MeC5H4)2Yb[OC(NPh2)N(n-hexyl)] }2(1). Complex 1 was...Bis (methylcyclopentadienyl) lanthanide amido complex (MeCp) 2YbNPh2 (THF) reacted with n-hexyl isocyanate (n-nexylNCO) in 1:1 molar ratio to give {(MeC5H4)2Yb[OC(NPh2)N(n-hexyl)] }2(1). Complex 1 was characterized by elemental analyses and X-ray diffraction. The title complex belongs to trigonal system and R-3 space group. Its unit cell parameters are a =2.9533(11) nm, b =2.9533(11) nm, c = 1.5873(6) nm, V= 11.9896(80) nm^3, Z =9, Dc= 1.562 mg·m^-3, μ = 3.536 mm^-1(Mo Kα), F(000) =5670, R =0.034, Rw =0.064. It is a dimeric structure with two symmetrical bridged oxygen atoms. Nitrogen atom is coordinated to the ytterbium atom to form a tricyclic backbone. The coordination number of ytterbium is 9. The whole molecule shows central symmetry.展开更多
Having been designed via bottom-up strategy based on density functional theory(DFT) calculations, a complex of ytterbium(II) with pyridyl amido ligand was successfully synthesized by one-pot reaction in laboratory...Having been designed via bottom-up strategy based on density functional theory(DFT) calculations, a complex of ytterbium(II) with pyridyl amido ligand was successfully synthesized by one-pot reaction in laboratory, DFT calculation shows that pyridyl amido ligands can stabilize the complex via steric and electron effect. This success in integrating computation with synthesis will inspire more explorations in the development of a new complex in lanthanide chemistry.展开更多
Bacterial surface glycans perform a diverse and important set of biological roles,and have been widely used in the treatment of bacterial infectious diseases.The majority of bacterial surface glycans are decorated wit...Bacterial surface glycans perform a diverse and important set of biological roles,and have been widely used in the treatment of bacterial infectious diseases.The majority of bacterial surface glycans are decorated with diverse rare functional groups,including amido,acetamidino,carboxamido and pyruvate groups.These functional groups are thought to be important constituents for the biological activities of glycans.Chemical synthesis of glycans bearing these functional groups or their variants is essential for the investigation of structure-activity relationships by a medicinal chemistry approach.To date,a broad choice of synthetic methods is available for targeting the different rare functional groups in bacterial surface glycans.This article reviews the structures of naturally occurring rare functional groups in bacterial surface glycans,and the chemical methods used for installation of these groups.展开更多
Symmetryandaxialityarethought tobeguides toward the pursuit of high energy barrier and blocking temperature for thedysprosium(Ⅲ)(Dy^(Ⅲ))single-molecule magnets(SMMs).The Dy^(Ⅲ)complexeswith low coordination numbers...Symmetryandaxialityarethought tobeguides toward the pursuit of high energy barrier and blocking temperature for thedysprosium(Ⅲ)(Dy^(Ⅲ))single-molecule magnets(SMMs).The Dy^(Ⅲ)complexeswith low coordination numbers are intended to satisfy axial symmetry.Here,we report four four-coordinate Dy^(Ⅲ)SMMs based on bis(arylamido)dysprosium building block{Dy(N^(RR’))2(μ-Cl)_(2)K}(N^(RR’)={N(SiMe_(3))(C_(6)H_(3)iPr_(2)-2,6)}^(−)),with two strong Dy–N and twoweak Dy–Cl bonds.Through fine-tuning of axial anisotropy,the SMM with the largest N–Dy–N angle of 139.24(15)°displayed magnetic hysteresis with a coercive field(H_(c))of 18.6 kOe at 2 K,which kept opening up to 35 K.Alternating current susceptibility measurement showed that the relaxation energy barrier reached as high as 1578 K,which is among the highest reported Dy^(Ⅲ)SMMs.Ab initio calculations revealed strong anisotropy and crystal-field axiality of the compound,despite the low symmetry,and provided a synthetically workable approach to construct high-performance SMMs useful in applications such as digital processing,transport electronics,quantumcomputing,and ultra-high-density data storage.展开更多
The aim of this work is to improve the photocatalytic and photoelectrochemical properties of TiO_(2) nanotubes(TiO_(2)-NTAs)by sensitizing them with PbS nanoparticles(NPs)prepared by the Successive Ionic Layer Adsorpt...The aim of this work is to improve the photocatalytic and photoelectrochemical properties of TiO_(2) nanotubes(TiO_(2)-NTAs)by sensitizing them with PbS nanoparticles(NPs)prepared by the Successive Ionic Layer Adsorption and Reaction method(SILAR).The Microstructure,surface morphology,phase composition and optical properties of the prepared structure were characterized using X-ray diffraction(XRD),scanning electron microscopy(SEM),transmission electron microscopy(TEM and High-resolution mode HRTEM)and X-ray photoelectron spectroscopy(XPS).The TiO_(2) NTAs were loaded by PbS NPs,which contents increase by increasing the number of SILAR cycles.The PbS NPs,which have a size in the order of ~20 nm,were found to be uniformly distributed in the TiO_(2) NTAs without damaging the tubular ordered structure.The photocatalytic activity of the PbS/TiO_(2) NTAs system,toward Amido Black(AB),showed significant enhancement compared to the bare untreated TiO_(2) NTs.At 30 SILAR deposition cycles the PbS-NPs/TiO_(2) NTAs structure is able to remove 75% of BA under simulated solar light,considerably higher than the 40% removal obtained with unloaded TiO_(2) NTAs.A significant improvement of the Photoelectrochemical(PEC)efficiency has been also demonstrated for the PbS-NPs/TiO_(2) NTAs hybrid system.This improvement is mainly related to visible-light harvesting and reduced recombination of photo-generated electron-hole pairs due to the synergistic effect of the heterojunction and to the wellorganized morphology of the TiO_(2) NTAs.展开更多
Perfluoro-capryl-amido-propyl-triethoxy-silane, CF3 (CF2)6 CONH (CH2)3 Si(OC2H5)3, is a new type of organic fluoro-silieon compounds. As there is a fluoro-alkyl group attached to the silicon atom at one end of t...Perfluoro-capryl-amido-propyl-triethoxy-silane, CF3 (CF2)6 CONH (CH2)3 Si(OC2H5)3, is a new type of organic fluoro-silieon compounds. As there is a fluoro-alkyl group attached to the silicon atom at one end of the molecule, so this compound pos-展开更多
文摘SNCR(选择性非催化还原)过程试验是在CRF(Cornbustion Research Facility)试验装置上进行的。使用尿素、氨水、(NH4)2CO3、NH4HCO3还原烟气中的NOx,通过雾化喷嘴在CRF炉膛内喷入还原剂。试验结果表明,对于所使用的还原剂随着NH3/NO摩尔比的增加,NO还原效率逐渐提高;对于尿素、氨水、(NH4)2CO3等还原剂,氨氮比为1-2.5,脱硝效率分别为65%-89%、62%-86%、45%-84%;对于NH4HCO3,氨氮摩尔比0.8-1.5,脱硝效率为46%-73%。不同还原剂的温度窗口不同,适宜尿素进行SNCR过程的反应温度最高,氨水最低。
文摘To make further studies on the difference of cis-nitenpyram analogues, a series of cis-nitenpyram com- pounds containing a flexible amido segment anchored on tetrahydropyrimidine ring was designed and synthesized. Preliminary bioassays indicate that all the analogues exhibit a mortality of 100% at 100 rag/L, and the analogue 4d shows the best activity against Nilaparvata lugens and Myzus persicae, with a mortality of 100% at 4 mg/L (LCs0=0.172 rag/L). The structure activity relationship studies show that insecticidal activities of the analogues are affected by the kinds and size of substituent R. In addition, the molecular docking simulations reveal that compouds 4 with a flexible amido segment on tetrahydropyrimidine ring show their different binding affinities for the nicotinic acetyleholine receptor(nAChR) of insect and compoud 4d shows stronger hydrogen-bonding with nAChR, which may provide the structure-activity relationship observed in vitro.
基金This work was financially supported by the National Natural Science Foundation of China(Nos.50073028,29974036,20174047).
文摘A novel soluble and reactive amide-bridged ladderlike polyhydrosiloxane (ALPHS) was first synthesized by an amido H-bonding self-assembled template. ALPHS with molecular weight M^-a = 18300 has very highly ordered ladderlike structure, which was confirmed by a sharp resonance absorption peak of [-Si(H)O2/2 ] moiety with the half peak width △1/2 〈 0.5 in^29Si-NMR spectrum. Presence of the reactive Si-H groups gives ALPHS an opportunity to further derive a variety of functional polymers by versatile Si-H reactions such as hydrosilylation, condensation, and so on.
文摘A novel, reactive amide-bridged ladder polyvinylsiloxane (abbr. LP) with Mn= 2.4×10^4 was synthesized for the first time by means of aryl amide H-bonding self-assembled template. The regularity of LP was characterized by the XRD, ^29Si NMR and DSC methods. XRD analysis demonstrated the ladder width w = 9.09A and the ladder thickness t = 3.89A, respectively, which are approximately consistent with the molecular simulation-calculated ones: w'= 10.60A and t'= 3.06A. ^29Si NMR displayed a resonance peak with small half peak width, △1/2 - 4 ppm, for the moiety [=Si(Vi)O2/2-]n of LP. Besides, as a collateral evidence, DSC measurement revealed a high glass transition temperature Tg = 225℃, suggesting high stiffness of the ladder main chain of LP.
文摘Bis (methylcyclopentadienyl) lanthanide amido complex (MeCp) 2YbNPh2 (THF) reacted with n-hexyl isocyanate (n-nexylNCO) in 1:1 molar ratio to give {(MeC5H4)2Yb[OC(NPh2)N(n-hexyl)] }2(1). Complex 1 was characterized by elemental analyses and X-ray diffraction. The title complex belongs to trigonal system and R-3 space group. Its unit cell parameters are a =2.9533(11) nm, b =2.9533(11) nm, c = 1.5873(6) nm, V= 11.9896(80) nm^3, Z =9, Dc= 1.562 mg·m^-3, μ = 3.536 mm^-1(Mo Kα), F(000) =5670, R =0.034, Rw =0.064. It is a dimeric structure with two symmetrical bridged oxygen atoms. Nitrogen atom is coordinated to the ytterbium atom to form a tricyclic backbone. The coordination number of ytterbium is 9. The whole molecule shows central symmetry.
基金Supported by the National Natural Science Foundation of China(No.21201006), the Natural Foundation of Anhui Province of China(No.1208085QB27), the Special Research Fund for the Doctoral Program of Higher Education, China (No.26920123415120002) and the Fund of the State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, China (No.2012-27).Acknowledgement We thank Prof ZHANG Hongjie(Changchun Institute of Applied Chemistry, Chinese Academy of Sciences) for his helpful suggestions.
文摘Having been designed via bottom-up strategy based on density functional theory(DFT) calculations, a complex of ytterbium(II) with pyridyl amido ligand was successfully synthesized by one-pot reaction in laboratory, DFT calculation shows that pyridyl amido ligands can stabilize the complex via steric and electron effect. This success in integrating computation with synthesis will inspire more explorations in the development of a new complex in lanthanide chemistry.
基金This work was supported by the National Natural Science Foundation of China(Nos.22077052,21877052,21907039,22107037)China Postdoctoral Science Foundation(2020M681487,2021M691279)+4 种基金the National Key R&D Program of China(2020YFA0908304)the Natural Science Foundation of Jiangsu Province(BK20180030,BK20190575)the National First-class Discipline Program of Light Industry Technology and Engineering(LITE2018-14)the 111 Project(111-2-06)the Open Project of Key Laboratory of Carbohydrate Chemistry and Biotechnology(Jiangnan University),Ministry of Education(KLCCB-KF202005).
文摘Bacterial surface glycans perform a diverse and important set of biological roles,and have been widely used in the treatment of bacterial infectious diseases.The majority of bacterial surface glycans are decorated with diverse rare functional groups,including amido,acetamidino,carboxamido and pyruvate groups.These functional groups are thought to be important constituents for the biological activities of glycans.Chemical synthesis of glycans bearing these functional groups or their variants is essential for the investigation of structure-activity relationships by a medicinal chemistry approach.To date,a broad choice of synthetic methods is available for targeting the different rare functional groups in bacterial surface glycans.This article reviews the structures of naturally occurring rare functional groups in bacterial surface glycans,and the chemical methods used for installation of these groups.
基金supported by the National Natural Science Foundation of China(21971006)National Key R&D Program of China(2018YFA0306003,2017YFA0206301,and 2017YFA0204903)High-Performance Computing Platform at Peking University.
文摘Symmetryandaxialityarethought tobeguides toward the pursuit of high energy barrier and blocking temperature for thedysprosium(Ⅲ)(Dy^(Ⅲ))single-molecule magnets(SMMs).The Dy^(Ⅲ)complexeswith low coordination numbers are intended to satisfy axial symmetry.Here,we report four four-coordinate Dy^(Ⅲ)SMMs based on bis(arylamido)dysprosium building block{Dy(N^(RR’))2(μ-Cl)_(2)K}(N^(RR’)={N(SiMe_(3))(C_(6)H_(3)iPr_(2)-2,6)}^(−)),with two strong Dy–N and twoweak Dy–Cl bonds.Through fine-tuning of axial anisotropy,the SMM with the largest N–Dy–N angle of 139.24(15)°displayed magnetic hysteresis with a coercive field(H_(c))of 18.6 kOe at 2 K,which kept opening up to 35 K.Alternating current susceptibility measurement showed that the relaxation energy barrier reached as high as 1578 K,which is among the highest reported Dy^(Ⅲ)SMMs.Ab initio calculations revealed strong anisotropy and crystal-field axiality of the compound,despite the low symmetry,and provided a synthetically workable approach to construct high-performance SMMs useful in applications such as digital processing,transport electronics,quantumcomputing,and ultra-high-density data storage.
基金the financial support of the Tunisian Ministry of higher education and scientific researchthe financial support of the University of Sharjah(grant No.1602143028-P).
文摘The aim of this work is to improve the photocatalytic and photoelectrochemical properties of TiO_(2) nanotubes(TiO_(2)-NTAs)by sensitizing them with PbS nanoparticles(NPs)prepared by the Successive Ionic Layer Adsorption and Reaction method(SILAR).The Microstructure,surface morphology,phase composition and optical properties of the prepared structure were characterized using X-ray diffraction(XRD),scanning electron microscopy(SEM),transmission electron microscopy(TEM and High-resolution mode HRTEM)and X-ray photoelectron spectroscopy(XPS).The TiO_(2) NTAs were loaded by PbS NPs,which contents increase by increasing the number of SILAR cycles.The PbS NPs,which have a size in the order of ~20 nm,were found to be uniformly distributed in the TiO_(2) NTAs without damaging the tubular ordered structure.The photocatalytic activity of the PbS/TiO_(2) NTAs system,toward Amido Black(AB),showed significant enhancement compared to the bare untreated TiO_(2) NTs.At 30 SILAR deposition cycles the PbS-NPs/TiO_(2) NTAs structure is able to remove 75% of BA under simulated solar light,considerably higher than the 40% removal obtained with unloaded TiO_(2) NTAs.A significant improvement of the Photoelectrochemical(PEC)efficiency has been also demonstrated for the PbS-NPs/TiO_(2) NTAs hybrid system.This improvement is mainly related to visible-light harvesting and reduced recombination of photo-generated electron-hole pairs due to the synergistic effect of the heterojunction and to the wellorganized morphology of the TiO_(2) NTAs.
文摘Perfluoro-capryl-amido-propyl-triethoxy-silane, CF3 (CF2)6 CONH (CH2)3 Si(OC2H5)3, is a new type of organic fluoro-silieon compounds. As there is a fluoro-alkyl group attached to the silicon atom at one end of the molecule, so this compound pos-