Flexibility of the CSIR-RCS, induction stirring with simultaneous air cooling process, in combination with high pressure die casting is successfully demonstrated by semi-solid rheocasting of plates performed on commer...Flexibility of the CSIR-RCS, induction stirring with simultaneous air cooling process, in combination with high pressure die casting is successfully demonstrated by semi-solid rheocasting of plates performed on commercial 2024, 6082 and 7075 wrought aluminum alloys. Tensile properties were measured for the above mentioned rheocast wrought aluminum alloys in the T6 condition. The results showed that tensile properties were close to or even in some cases exceeded the minimum specifications. The yield strength and elongation of rheocast 2024-T6 exceeded the minimum requirements of the wrought alloy in the T6 condition but the ultimate tensile strength achieved only 90% of the specification because the Mg content of the starting alloy was below the commercial alloy specification. The strengths of rheocast 6082-T6 exceeded all of the wrought alloy T6 strength targets but the elongation only managed 36% of the required minimum due to porosity, caused by incipient melting during solution heat treatment, and the presence of fine intermetallie needles in the eutectic. The yield strength of rheocast 7075 exceeded the required one and the ultimate tensile strength also managed 97% of the specification; while the elongation only reached 46% of the minimum requirement also due to incipient melting porosity caused during the solution heat treatment process.展开更多
The influence of aluminum and copper content in the starting Nd-Fe-B magnet on grain boundary diffusion process(GBDP) was studied by observing the phase transformation behaviors of the magnets in-situ at high temperat...The influence of aluminum and copper content in the starting Nd-Fe-B magnet on grain boundary diffusion process(GBDP) was studied by observing the phase transformation behaviors of the magnets in-situ at high temperature. A higher coercivity increment is discovered in the sample with higher AI/Cu despite the fact that its Dy diffusion amount is the same as the other. DSC analysis shows an evident melting behavior in the higher Al/Cu sample. Laser scanning confocal microscopy(LSCM) in-situ characterization shows a large amount of melted intergranular phase spills out to the surface simultaneously at around 600 ℃ in the high Al/Cu sample, while the phase spills out gradually one after another in the range between 623 and680 ℃ in the other sample, which indicates that the intergranular phase can be more easily melted in the sample containing more AI/Cu. The area fraction of matrix phase remarkably shrinks while that of intergranular phase enlarges after LSCM heating, which demonstrates the outer region of the Nd_2 Fe_(14)B grains melt at the temperature of 900 ℃. Electron probe microanalyzer result(EPMA) shows that the Nd and Dy concentrate in edge regions and subsequently mix into the intergranular phase with the melting of the grain edge, while a large amount of AI and Cu in the intergranular phase spill out. Nevertheless, the sample with higher starting AI/Cu still remains higher residual contents after LSCM experiments, and that could probably be the main reason why the high AI/Cu magnet shows smaller coercivity decrement after LSCM experiment. Overall, the increase of AI/Cu in the starting magnet optimizes the Dy distribution and the wettability of intergranular phase, enhancing coercivity increment effect further.展开更多
文摘Flexibility of the CSIR-RCS, induction stirring with simultaneous air cooling process, in combination with high pressure die casting is successfully demonstrated by semi-solid rheocasting of plates performed on commercial 2024, 6082 and 7075 wrought aluminum alloys. Tensile properties were measured for the above mentioned rheocast wrought aluminum alloys in the T6 condition. The results showed that tensile properties were close to or even in some cases exceeded the minimum specifications. The yield strength and elongation of rheocast 2024-T6 exceeded the minimum requirements of the wrought alloy in the T6 condition but the ultimate tensile strength achieved only 90% of the specification because the Mg content of the starting alloy was below the commercial alloy specification. The strengths of rheocast 6082-T6 exceeded all of the wrought alloy T6 strength targets but the elongation only managed 36% of the required minimum due to porosity, caused by incipient melting during solution heat treatment, and the presence of fine intermetallie needles in the eutectic. The yield strength of rheocast 7075 exceeded the required one and the ultimate tensile strength also managed 97% of the specification; while the elongation only reached 46% of the minimum requirement also due to incipient melting porosity caused during the solution heat treatment process.
文摘The influence of aluminum and copper content in the starting Nd-Fe-B magnet on grain boundary diffusion process(GBDP) was studied by observing the phase transformation behaviors of the magnets in-situ at high temperature. A higher coercivity increment is discovered in the sample with higher AI/Cu despite the fact that its Dy diffusion amount is the same as the other. DSC analysis shows an evident melting behavior in the higher Al/Cu sample. Laser scanning confocal microscopy(LSCM) in-situ characterization shows a large amount of melted intergranular phase spills out to the surface simultaneously at around 600 ℃ in the high Al/Cu sample, while the phase spills out gradually one after another in the range between 623 and680 ℃ in the other sample, which indicates that the intergranular phase can be more easily melted in the sample containing more AI/Cu. The area fraction of matrix phase remarkably shrinks while that of intergranular phase enlarges after LSCM heating, which demonstrates the outer region of the Nd_2 Fe_(14)B grains melt at the temperature of 900 ℃. Electron probe microanalyzer result(EPMA) shows that the Nd and Dy concentrate in edge regions and subsequently mix into the intergranular phase with the melting of the grain edge, while a large amount of AI and Cu in the intergranular phase spill out. Nevertheless, the sample with higher starting AI/Cu still remains higher residual contents after LSCM experiments, and that could probably be the main reason why the high AI/Cu magnet shows smaller coercivity decrement after LSCM experiment. Overall, the increase of AI/Cu in the starting magnet optimizes the Dy distribution and the wettability of intergranular phase, enhancing coercivity increment effect further.