Al2O3 powders with different morphologies,namely fibrous,sheet-like,and spherical,were prepared by the hydrothermal-thermolysis method.Subsequently,polycrystalline,transparent cerium doped lutetium aluminum garnet(Lu...Al2O3 powders with different morphologies,namely fibrous,sheet-like,and spherical,were prepared by the hydrothermal-thermolysis method.Subsequently,polycrystalline,transparent cerium doped lutetium aluminum garnet(Lu3Al5O(12):Ce^3+)green phosphors were synthesized by high temperature solidstate method using commercial lutetium(III)oxide,cerium(III)oxide,and as-prepared Al2O3 powders with different morphologies.The phases,morphologies,and photoluminescent properties of the prepared phosphors were investigated by X-ray diffraction(XRD),scanning electron microscopy(SEM),and photoluminescence spectroscopy(PL).Moreover,the influences of the morphologies ofα-Al2O3 on the types of crystal structure,morphologies,and photoluminescent properties of LuAG:Ce^3+green phosphors were investigated.The results indicated that the morphologies and particle sizes of theα-Al2O3 powders could be controlled by the additives and parameters.Notably,the sphericalα-Al2O3 powders with good dispersibility were found to be the excellent base materials of LuAG:Ce^3+green phosphors for white light emitting diodes.展开更多
In this study,alumina/A380 composite coatings were fabricated by cold spray.The influence of alumina particulates,morphology(spherical and irregular)and content on the deposition behavior of the coatings(including sur...In this study,alumina/A380 composite coatings were fabricated by cold spray.The influence of alumina particulates,morphology(spherical and irregular)and content on the deposition behavior of the coatings(including surface roughness,surface residual stress,cross-sectional microstructure and microhardness)was investigated.Results revealed that the spherical alumina mainly shows micro-tamping effect during deposition,which result in remarkable low surface roughness and porosity of the coatings.In addition,very low deposition efficiency and good interfacial bonding between the coating and the substrate were achieved.For irregular alumina particles,the embedding of ceramic particulates in the coating was dominant during deposition process,resulting in high retention in the final deposit.However,it showed limited influence on porosity,surface roughness and interfacial bonding of the deposit.The coatings containing irregular alumina particulates exhibited much higher microhardness than those containing spherical alumina due to the higher load-bearing capacity of deposited alumina.展开更多
A comprehensive heat and mass transfer model of dissolution process of non-agglomerated and agglomerated alumina particles was established in an aluminum reduction cell. An appropriate finite difference method was use...A comprehensive heat and mass transfer model of dissolution process of non-agglomerated and agglomerated alumina particles was established in an aluminum reduction cell. An appropriate finite difference method was used to calculate the size dissolution rate, dissolution time and mass of alumina dissolved employing commercial software and custom algorithm based on the shrinking sphere assumption. The effects of some convection and thermal condition parameters on the dissolution process were studied. The calculated results show that the decrease of alumina content or the increase of alumina diffusion coefficient is beneficial for the increase of size dissolution rate and the decrease of dissolution time of non-agglomerated particles. The increase of bath superheat or alumina preheating temperature results in the increase of size dissolution rate and the decrease of dissolution time of agglomerated particles. The calculated dissolution curve of alumina(mass fraction of alumina dissolved) for a 300 k A aluminum reduction cell is in well accordance with the experimental results. The analysis shows that the dissolution process of alumina can be divided into two distinct stages: the fast dissolution stage of non-agglomerated particles and the slow dissolution stage of agglomerated particles, with the dissolution time in the order of 10 and 100 s, respectively. The agglomerated particles were identified to be the most important factor limiting the dissolution process.展开更多
The effects of separation time and magnetic induction intensity on the separation efficiency of alumina particles with diameters varying from 30 to 200 μm in aluminum melt were investigated. The experimental results ...The effects of separation time and magnetic induction intensity on the separation efficiency of alumina particles with diameters varying from 30 to 200 μm in aluminum melt were investigated. The experimental results show that the particle-accumulated layer is formed in the periphery of the solidified specimen when the diameter of the separated molten metal, the magnetic induction intensity and the separation time are 10 mm, 0.04 T and 1 s, respectively. When the separation time is 2 s, the particle-accumulated layer can be observed obviously and the separation efficiency is about 80%. There are few alumina particles in the inner of the solidified specimen when the separation time is 3 s. The separation efficiency higher than 85% can be achieved when the separation time is longer than 3 s. When the magnetic induction intensity is 0.06 T, the visible particle-accumulated layer can be formed in 1 s and the separation efficiency is higher than 95%. The experimental results were compared with the calculated results at last.展开更多
This work focused on the role of Al_(2)O_(3) particles in the corrosion behavior of cold sprayed AA5083 aluminum alloy matrix composite(Al-MMC)coatings.The electrochemical characterization of the coatings was investig...This work focused on the role of Al_(2)O_(3) particles in the corrosion behavior of cold sprayed AA5083 aluminum alloy matrix composite(Al-MMC)coatings.The electrochemical characterization of the coatings was investigated in a 3.5 wt.%NaCl solution as a function of time.The results show that fragmentation of Al_(2)O_(3) particles is not clearly observed in the case of AA5083/20 vol.%Al_(2)O_(3) coating,while the broken Al_(2)O_(3) particles can be seen clearly in AA5083/40 vol.%Al_(2)O_(3) and AA5083/60 vol.%Al_(2)O_(3) coatings.The addition of 20 vol.%Al_(2)O_(3) particles yield the coating with the lowest porosity,and different volume fractions of Al_(2)O_(3)in the feedstock have important effects on the electrochemical behavior of composite coatings.The Al-MMC coating reinforced with 20 vol.%Al_(2)O_(3) particles exhibits the highest Ecorrand the lowest icorrcompared with the other conditions.The order of current density is as follows:AA5083/20vol.%Al_(2)O_(3)<AA5083<AA5083/40 vol.%Al_(2)O_(3)<AA5083/60 vol.%Al_(2)O_(3).展开更多
A contactor vessel was built to operate as either a mechanically or a conventional spouted bed for the purpose of analyzing the drying of pasty and granular materials under comparable conditions in both configurations...A contactor vessel was built to operate as either a mechanically or a conventional spouted bed for the purpose of analyzing the drying of pasty and granular materials under comparable conditions in both configurations. A classical conical–cylindrical spouted bed with a 60° conical base and an air inlet central orifice was modified to enable the switch by introducing in the vessel’s center an open helicoidal conveyor screw placed above the air inlet orifice. This screw is removable and conveniently returns the bed to its conventional spouted configuration. Experiments on drying solutions (calcium carbonate suspensions and skimmed milk) and granular materials (porous alumina particles) were performed for various bed parameter settings. The spouting pressure drop, outlet air temperature, and relative humidity were measured over time under different conditions. Mechanical agitation is proved effective in drying diluted carbonate calcium liquid suspensions and coarse porous alumina particles at an air velocity approximately 50% lower in comparison to drying in a conventional spouted bed. The conventional spouted bed performed better at drying liquid skimmed milk as the mechanical agitation combined with the axial inlet air flow is not effective in mitigating sticking and powder agglomeration in the bed when handling pastes of complex composition. Introducing mechanical agitation in the designed setup broadens the operating range of a conventional spouted bed with axial air flow in the inlet.展开更多
基金Funded by Shan’xi Educational Committee(No.17JK0395)
文摘Al2O3 powders with different morphologies,namely fibrous,sheet-like,and spherical,were prepared by the hydrothermal-thermolysis method.Subsequently,polycrystalline,transparent cerium doped lutetium aluminum garnet(Lu3Al5O(12):Ce^3+)green phosphors were synthesized by high temperature solidstate method using commercial lutetium(III)oxide,cerium(III)oxide,and as-prepared Al2O3 powders with different morphologies.The phases,morphologies,and photoluminescent properties of the prepared phosphors were investigated by X-ray diffraction(XRD),scanning electron microscopy(SEM),and photoluminescence spectroscopy(PL).Moreover,the influences of the morphologies ofα-Al2O3 on the types of crystal structure,morphologies,and photoluminescent properties of LuAG:Ce^3+green phosphors were investigated.The results indicated that the morphologies and particle sizes of theα-Al2O3 powders could be controlled by the additives and parameters.Notably,the sphericalα-Al2O3 powders with good dispersibility were found to be the excellent base materials of LuAG:Ce^3+green phosphors for white light emitting diodes.
基金financially supported by the National Natural Science Foundation of China (Nos.51671205 and 51801217)
文摘In this study,alumina/A380 composite coatings were fabricated by cold spray.The influence of alumina particulates,morphology(spherical and irregular)and content on the deposition behavior of the coatings(including surface roughness,surface residual stress,cross-sectional microstructure and microhardness)was investigated.Results revealed that the spherical alumina mainly shows micro-tamping effect during deposition,which result in remarkable low surface roughness and porosity of the coatings.In addition,very low deposition efficiency and good interfacial bonding between the coating and the substrate were achieved.For irregular alumina particles,the embedding of ceramic particulates in the coating was dominant during deposition process,resulting in high retention in the final deposit.However,it showed limited influence on porosity,surface roughness and interfacial bonding of the deposit.The coatings containing irregular alumina particulates exhibited much higher microhardness than those containing spherical alumina due to the higher load-bearing capacity of deposited alumina.
基金Project(2010AA065201)supported by the High-tech Research and Development Program of ChinaProject(2013zzts038)supported by the Fundamental Research Funds for the Central Universities of Central South University,ChinaProject(ZB2011CBBCe1)supported by the Major Program for Aluminum Corporation of China Limited
文摘A comprehensive heat and mass transfer model of dissolution process of non-agglomerated and agglomerated alumina particles was established in an aluminum reduction cell. An appropriate finite difference method was used to calculate the size dissolution rate, dissolution time and mass of alumina dissolved employing commercial software and custom algorithm based on the shrinking sphere assumption. The effects of some convection and thermal condition parameters on the dissolution process were studied. The calculated results show that the decrease of alumina content or the increase of alumina diffusion coefficient is beneficial for the increase of size dissolution rate and the decrease of dissolution time of non-agglomerated particles. The increase of bath superheat or alumina preheating temperature results in the increase of size dissolution rate and the decrease of dissolution time of agglomerated particles. The calculated dissolution curve of alumina(mass fraction of alumina dissolved) for a 300 k A aluminum reduction cell is in well accordance with the experimental results. The analysis shows that the dissolution process of alumina can be divided into two distinct stages: the fast dissolution stage of non-agglomerated particles and the slow dissolution stage of agglomerated particles, with the dissolution time in the order of 10 and 100 s, respectively. The agglomerated particles were identified to be the most important factor limiting the dissolution process.
基金Projects(50474055, 50274018) supported by the National Natural Science Foundation of ChinaProject (20052176) supported by the Natural Science Foundation of Liaoning Province, China
文摘The effects of separation time and magnetic induction intensity on the separation efficiency of alumina particles with diameters varying from 30 to 200 μm in aluminum melt were investigated. The experimental results show that the particle-accumulated layer is formed in the periphery of the solidified specimen when the diameter of the separated molten metal, the magnetic induction intensity and the separation time are 10 mm, 0.04 T and 1 s, respectively. When the separation time is 2 s, the particle-accumulated layer can be observed obviously and the separation efficiency is about 80%. There are few alumina particles in the inner of the solidified specimen when the separation time is 3 s. The separation efficiency higher than 85% can be achieved when the separation time is longer than 3 s. When the magnetic induction intensity is 0.06 T, the visible particle-accumulated layer can be formed in 1 s and the separation efficiency is higher than 95%. The experimental results were compared with the calculated results at last.
基金financially supported by the authors would like to acknowledge the National Key Research and Development Program of China(No.2016YFB1100104)the National Natural Science Foundation of China(No.51875470)+1 种基金the State Key Laboratory of Solidification Processing(NPU,China)(No.2019-QZ-01)the financial support from the fund of SAST(No.SAST2016043)。
文摘This work focused on the role of Al_(2)O_(3) particles in the corrosion behavior of cold sprayed AA5083 aluminum alloy matrix composite(Al-MMC)coatings.The electrochemical characterization of the coatings was investigated in a 3.5 wt.%NaCl solution as a function of time.The results show that fragmentation of Al_(2)O_(3) particles is not clearly observed in the case of AA5083/20 vol.%Al_(2)O_(3) coating,while the broken Al_(2)O_(3) particles can be seen clearly in AA5083/40 vol.%Al_(2)O_(3) and AA5083/60 vol.%Al_(2)O_(3) coatings.The addition of 20 vol.%Al_(2)O_(3) particles yield the coating with the lowest porosity,and different volume fractions of Al_(2)O_(3)in the feedstock have important effects on the electrochemical behavior of composite coatings.The Al-MMC coating reinforced with 20 vol.%Al_(2)O_(3) particles exhibits the highest Ecorrand the lowest icorrcompared with the other conditions.The order of current density is as follows:AA5083/20vol.%Al_(2)O_(3)<AA5083<AA5083/40 vol.%Al_(2)O_(3)<AA5083/60 vol.%Al_(2)O_(3).
文摘A contactor vessel was built to operate as either a mechanically or a conventional spouted bed for the purpose of analyzing the drying of pasty and granular materials under comparable conditions in both configurations. A classical conical–cylindrical spouted bed with a 60° conical base and an air inlet central orifice was modified to enable the switch by introducing in the vessel’s center an open helicoidal conveyor screw placed above the air inlet orifice. This screw is removable and conveniently returns the bed to its conventional spouted configuration. Experiments on drying solutions (calcium carbonate suspensions and skimmed milk) and granular materials (porous alumina particles) were performed for various bed parameter settings. The spouting pressure drop, outlet air temperature, and relative humidity were measured over time under different conditions. Mechanical agitation is proved effective in drying diluted carbonate calcium liquid suspensions and coarse porous alumina particles at an air velocity approximately 50% lower in comparison to drying in a conventional spouted bed. The conventional spouted bed performed better at drying liquid skimmed milk as the mechanical agitation combined with the axial inlet air flow is not effective in mitigating sticking and powder agglomeration in the bed when handling pastes of complex composition. Introducing mechanical agitation in the designed setup broadens the operating range of a conventional spouted bed with axial air flow in the inlet.