期刊文献+
共找到5,831篇文章
< 1 2 250 >
每页显示 20 50 100
Biomass carbon stocks and their changes in northern China's grasslands during 1982-2006 被引量:65
1
作者 Anwar MOHAMMAT 《Science China(Life Sciences)》 SCIE CAS 2010年第7期841-850,共10页
Grassland covers approximately one-third of the area of China and plays an important role in the global terrestrial carbon(C) cycle.However,little is known about biomass C stocks and dynamics in these grasslands.Durin... Grassland covers approximately one-third of the area of China and plays an important role in the global terrestrial carbon(C) cycle.However,little is known about biomass C stocks and dynamics in these grasslands.During 2001-2005,we conducted five consecutive field sampling campaigns to investigate above-and below-ground biomass for northern China's grasslands.Using measurements obtained from 341 sampling sites,together with a NDVI(normalized difference vegetation index) time series dataset over 1982-2006,we examined changes in biomass C stock during the past 25 years.Our results showed that biomass C stock in northern China's grasslands was estimated at 557.5 Tg C(1 Tg=1012 g),with a mean density of 39.5 g C m-2 for above-ground biomass and 244.6 g C m-2 for below-ground biomass.An increasing rate of 0.2 Tg C yr-1 has been observed over the past 25 years,but grassland biomass has not experienced a significant change since the late 1980s.Seasonal rainfall(January-July) was the dominant factor driving temporal dynamics in biomass C stock;however,the responses of grassland biomass to climate variables differed among various grassland types.Biomass in arid grasslands(i.e.,desert steppe and typical steppe) was significantly associated with precipitation,while biomass in humid grasslands(i.e.,alpine meadow) was positively correlated with mean January-July temperatures.These results suggest that different grassland ecosystems in China may show diverse responses to future climate changes. 展开更多
关键词 above-ground BIOMASS alpine grasslands BELOW-GROUND BIOMASS carbon STOCK NDVI TEMPERATE grasslands
原文传递
Ecosystem carbon stocks and their changes in China's grasslands 被引量:61
2
作者 Anwar MOHAMMAT 《Science China(Life Sciences)》 SCIE CAS 2010年第7期757-765,共9页
The knowledge of carbon(C) stock and its dynamics is crucial for understanding the role of grassland ecosystems in China's terrestrial C cycle.To date,a comprehensive assessment on C balance in China's grassla... The knowledge of carbon(C) stock and its dynamics is crucial for understanding the role of grassland ecosystems in China's terrestrial C cycle.To date,a comprehensive assessment on C balance in China's grasslands is still lacking.By reviewing published literature,this study aims to evaluate ecosystem C stocks(both vegetation biomass and soil organic C) and their changes in China's grasslands.Our results are summarized as follows:(1) biomass C density(C stock per area) of China's grasslands differed greatly among previous studies,ranging from 215.8 to 348.1 g C m-2 with an average of 300.2 g C m-2.Likewise,soil C density also varied greatly between 8.5 and 15.1 kg C m-2.In total,ecosystem C stock in China's grasslands was estimated at 29.1 Pg C.(2) Both the magnitude and direction of ecosystem C changes in China's grasslands differed greatly among previous studies.According to recent reports,neither biomass nor soil C stock in China's grasslands showed a significant change during the past 20 years,indicating that grassland ecosystems are C neutral.(3) Spatial patterns and temporal dynamics of grassland biomass were closely correlated with precipitation,while changes in soil C stocks exhibited close associations with soil moisture and soil texture.Human activities,such as livestock grazing and fencing could also affect ecosystem C dynamics in China's grasslands. 展开更多
关键词 alpine grasslands biomass CARBON SINK CLIMATE change SOIL organic CARBON SOIL texture TEMPERATE grasslands
原文传递
Patterns of above-and belowground biomass allocation in China's grasslands:Evidence from individual-level observations 被引量:56
3
作者 WANG Liang NIU KeChang +1 位作者 YANG YuanHe ZHOU Peng 《Science China(Life Sciences)》 SCIE CAS 2010年第7期851-857,共7页
Above-and belowground biomass allocation not only influences growth of individual plants,but also influences vegetation structures and functions,and consequently impacts soil carbon input as well as terrestrial ecosys... Above-and belowground biomass allocation not only influences growth of individual plants,but also influences vegetation structures and functions,and consequently impacts soil carbon input as well as terrestrial ecosystem carbon cycling.However,due to sampling difficulties,a considerable amount of uncertainty remains about the root:shoot ratio(R/S),a key parameter for models of terrestrial ecosystem carbon cycling.We investigated biomass allocation patterns across a broad spatial scale.We collected data on individual plant biomass and systematically sampled along a transect across the temperate grasslands in Inner Mongolia as well as in the alpine grasslands on the Tibetan Plateau.Our results indicated that the median of R/S for herbaceous species was 0.78 in China's grasslands as a whole.R/S was significantly higher in temperate grasslands than in alpine grasslands(0.84 vs.0.65).The slope of the allometric relationship between above-and belowground biomass was steeper for temperate grasslands than for alpine.Our results did not support the hypothesis that aboveground biomass scales isometrically with belowground biomass.The R/S in China's grasslands was not significantly correlated with mean annual temperature(MAT) or mean annual precipitation(MAP).Moreover,comparisons of our results with previous findings indicated a large difference between R/S data from individual plants and communities.This might be mainly caused by the underestimation of R/S at the individual level as a result of an inevitable loss of fine roots and the overestimation of R/S in community-level surveys due to grazing and difficulties in identifying dead roots.Our findings suggest that root biomass in grasslands tended to have been overestimated in previous reports of R/S. 展开更多
关键词 aboveground biomass ALLOMETRY alpine grassland belowground biomass Inner Mongolia isometric relationship root:shoot ratio temperate grassland Tibetan Plateau
原文传递
Net ecosystem CO_2 exchange and controlling factors in a steppe——Kobresia meadow on the Tibetan Plateau 被引量:48
4
作者 SHI Peili, SUN Xiaomin, XU Lingling, ZHANG Xianzhou, HE Yongtao, ZHANG Dongqiu & YU Guirui Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China Graduate University of Chinese Academy of Sciences, Beijing 100039, China 《Science China Earth Sciences》 SCIE EI CAS 2006年第S2期207-218,共12页
Knowledge of seasonal variation of net ecosystem CO2 exchange (NEE) and its biotic and abiotic controllers will further our understanding of carbon cycling process, mechanism and large-scale modelling. Eddy covariance... Knowledge of seasonal variation of net ecosystem CO2 exchange (NEE) and its biotic and abiotic controllers will further our understanding of carbon cycling process, mechanism and large-scale modelling. Eddy covariance technique was used to measure NEE, biotic and abiotic factors for nearly 3 years in the hinterland alpine steppe--Korbresia meadow grassland on the Tibetan Plateau, the present highest fluxnet station in the world. The main objectives are to investigate dynamics of NEE and its components and to determine the major controlling factors. Maximum carbon assimilation took place in August and maximum carbon loss occurred in November. In June, rainfall amount due to monsoon climate played a great role in grass greening and consequently influenced interannual variation of ecosystem carbon gain. From July through September, monthly NEE presented net carbon assimilation. In other months, ecosystem exhibited carbon loss. In growing season, daytime NEE was mainly controlled by photosynthetically active radiation (PAR). In addition, leaf area index (LAI) interacted with PAR and together modulated NEE rates. Ecosystem respiration was controlled mainly by soil temperature and simultaneously by soil moisture. Q10 was negatively correlated with soil temperature but positively correlated with soil moisture. Large daily range of air temperature is not necessary to enhance carbon gain. Standard respiration rate at referenced 10℃(R10) was positively correlated with soil moisture, soil temperature, LAI and aboveground biomass. Rainfall patterns in growing season markedly influenced soil moisture and therefore soil moisture controlled seasonal change of ecosystem respiration. Pulse rainfall in the beginning and at the end of growing season induced great ecosystem respiration and consequently a great amount of carbon was lost. Short growing season and relative low temperature restrained alpine grass vegetation development. The results suggested that LAI be usually in a low level and carbon uptake be relatively low. Rainf 展开更多
关键词 Tibetan Plateau alpine steppe--Kobresia meadow NEE ecosystem respiration PAR soil moisture temperature response LAI eddy covariance.
原文传递
Impacts of permafrost changes on alpine ecosystem in Qinghai-Tibet Plateau 被引量:42
5
作者 WANG Genxu1,3 , LI Yuanshou2 , WU Qingbai2 & WANG Yibo3 1. Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu 610041, China 2. Cold and Arid Regions Environmental and Engineering Research Institute, Chinese Academy of Sciences, Lanzhou 730000, China 3. Resource and Environment School, Lanzhou University, Lanzhou 730000, China 《Science China Earth Sciences》 SCIE EI CAS 2006年第11期1156-1169,共14页
Alpine cold ecosystem with permafrost environment is quite sensitive to climatic changes and the changes in permafrost can significantly affect the alpine ecosystem. The vegetation coverage, grassland biomass and soil... Alpine cold ecosystem with permafrost environment is quite sensitive to climatic changes and the changes in permafrost can significantly affect the alpine ecosystem. The vegetation coverage, grassland biomass and soil nutrient and texture are selected to indicate the regime of alpine cold ecosystems in the Qinghai-Tibet Plateau. The interactions between alpine ecosystem and permafrost were investigated with the depth of active layer, permafrost thickness and mean annual ground temperature (MAGTs). Based on the statistics model of GPTR for MAGTs and annual air temperatures, an analysis method was developed to analyze the impacts of permafrost changes on the alpine ecosystems. Under the climate change and human engineering activities, the permafrost change and its impacts on alpine ecosystems in the permafrost region between the Kunlun Mountains and the Tanggula Range of Qinghai-Tibet Plateau are studied in this paper. The results showed that the per- mafrost changes have a different influence on different alpine ecosystems. With the increase in the thickness of active layer, the vegetation cover and biomass of the alpine cold meadow exhibit a significant conic reduction, the soil organic matter content of the alpine cold meadow ecosystem shows an exponential decrease, and the surface soil materials become coarse and gravelly. The alpine cold steppe ecosystem, however, seems to have a relatively weak relation to the permafrost environment. Those relationships resulted in the fact that the distribution area of alpine cold meadow decreased by 7.98% and alpine cold swamp decreased by 28.11% under the permafrost environment degradation during recent 15 years. In the future 50 years the alpine cold meadow ecosystems in different geomorphologic units may have different responses to the changes of the permafrost under different climate warming conditions, among them the alpine cold meadow and swamp ecosystem located in the low mountain and plateau area will have a relatively serious degradation. Furthermore, from the angl 展开更多
关键词 PERMAFROST environment alpine cold ecosystem statistics relationship climate change impacts Qinghai-Tibet Plateau.
原文传递
川西高山典型自然植被土壤动物多样性 被引量:44
6
作者 黄旭 文维全 +4 位作者 张健 杨万勤 刘洋 闫帮国 黄玉梅 《应用生态学报》 CAS CSCD 北大核心 2010年第1期181-190,共10页
为了解川西高山不同自然植被类型下土壤动物的多样性差异,于2008年8月至2009年6月对该地区代表性植被——针叶林、灌木林和草甸下的土壤动物群落进行调查.从3种植被下共捕获土壤动物48343只,隶属于7门16纲31目117科.不同植被类型的大型... 为了解川西高山不同自然植被类型下土壤动物的多样性差异,于2008年8月至2009年6月对该地区代表性植被——针叶林、灌木林和草甸下的土壤动物群落进行调查.从3种植被下共捕获土壤动物48343只,隶属于7门16纲31目117科.不同植被类型的大型土壤动物优势类群差异较大,其土壤动物类群数存在显著差异(P<0.05).3种植被下土壤动物个体密度与类群数的垂直分布均具有明显表聚性.针叶林苔藓层的土壤动物个体密度与类群数极显著高于凋落物层和土壤层(P<0.01).不同植被下土壤动物密度-类群指数(DG)存在极显著差异(P<0.01).大型土壤动物生物量在6月达到最大值.Jacard相似系数显示:受干扰草甸的土壤动物群落与其他植被相似程度最低.表明植被类型对土壤动物群落结构特征影响显著;坡向、海拔以及干扰等因素对土壤动物群落结构也有影响. 展开更多
关键词 高山 土壤动物 多样性 群落结构 自然植被
原文传递
典型冰湖溃决型泥石流形成机制分析 被引量:42
7
作者 程尊兰 朱平一 宫怡文 《山地学报》 CSCD 2003年第6期716-720,共5页
冰湖溃决型泥石流是形成于高寒山区的一种特殊泥石流类型。本文以位于西藏喜马拉雅山南坡的樟藏布沟1981年暴发的大于百年一遇冰湖溃决型泥石流为例,探讨了冰湖溃决型泥石流的形成过程,形成条件、机制、发展趋势和危害。
关键词 泥石流 冰湖溃决 高寒山区
下载PDF
Alpine wetlands in the Lhasa River Basin, China 被引量:35
8
作者 ZHANG Yili WANG Chunlian +3 位作者 BAI Wanqi WANG Zhaofeng TU Yanli YANGJAEN Dor Gka 《Journal of Geographical Sciences》 SCIE CSCD 2010年第3期375-388,共14页
The Lhasa River Basin is one of the typical distribution regions of alpine wetlands on the Tibetan Plateau. It is very important to get a better understanding of the background and characteristics of alpine wetland fo... The Lhasa River Basin is one of the typical distribution regions of alpine wetlands on the Tibetan Plateau. It is very important to get a better understanding of the background and characteristics of alpine wetland for monitoring, protection and utilization. Wetland construction and distribution in the basin were analyzed based on multi-source data including field investigation data, CBERS remote sensing data and other thematic data provided by 3S technology. The results are (1) the total area of wetlands is 209,322.26 hm^2, accounting for 6.37% of the total land area of the basin. The wetlands are mainly dominated by natural wetland, with artificial wetland occupying only 1.09% of the wetland area; marsh wetland is the principal part of natural wetland, dominated by Kobresia littledalei swampy meadow which is distributed in the river source area and upstream of Chali, Damshung and Medro Gongkar counties. The ratio and type of wetlands in different counties differ significantly, which are widely distributed in Chali and Damshung counties (accounting for 62% of the total wetland area). (2) The concentrated vertical distribution of wetlands is at an elevation of 3600-5100 m The wetlands are widely distributed throughout the Yarlung Zangbo River Valley from river source to river mouth into the Yarlung Zangbo River. Marsh wetland is dominant in the source area and upstream of the river, with the mosaic distribution of lakes, Kobresia litUedalei and Carex moorcroftii swampy meadow, shrubby swamp and river; as for the middle-down streams, the primary types are river wetland and flooded wetland. The distribution is in a mosaic pattern of river, Kobresia humilis and Carex moorcroftii swampy meadow, Phragmites australis and subordinate grass marsh, flooded wetland and artificial wetland. 展开更多
关键词 Lhasa River Basin alpine wetland classification system DISTRIBUTION 3S technology
下载PDF
Parameterizing soil organic carbon's impacts on soil porosity and thermal parameters for Eastern Tibet grasslands 被引量:34
9
作者 CHEN YingYing YANG Kun +2 位作者 TANG WenJun QIN Jun ZHAO Long 《Science China Earth Sciences》 SCIE EI CAS 2012年第6期1001-1011,共11页
This study investigates the stratification of soil thermal properties induced by soil organic carbon (SOC) and its impacts on the parameterization of the thermal properties. Soil parameters were measured for alpine gr... This study investigates the stratification of soil thermal properties induced by soil organic carbon (SOC) and its impacts on the parameterization of the thermal properties. Soil parameters were measured for alpine grassland stations and North China flux stations, with a total of 34 stations and 77 soil profiles. Measured data indicate that the topsoils of alpine grasslands contain high SOC contents than underlying soil layers, which leads to higher soil porosity values and lower thermal conductivity and bulk density values in the topsoils. However, this stratification is not evident at the lowland stations due to low SOC contents. Evaluations against measured data show that three thermal conductivity schemes used in land surface models severely overestimate the values for soils with high SOC content (i.e. topsoils of alpine grassland), but they are better for soils with low SOC content. A new parameterization is then developed to take the impacts of SOC into account. The new one can well estimate the soil thermal conductivity values in both low and high SOC content cases, and therefore, it is a potential candidate of thermal conductivity scheme to be used in land surface models. 展开更多
关键词 soil organic carbon soil thermal parameters alpine grassland PARAMETERIZATION
原文传递
Changes in plant biomass and species composition of alpine Kobresia meadows along altitudinal gradient on the Qinghai-Tibetan Plateau 被引量:31
10
作者 WANG ChangTing1,3, CAO GuangMin1, WANG QiLan1, JING ZengChun1, DING LuMing1 & LONG RuiJun2 1 Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810001, China 2 College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730070, China 3 Graduate University of the Chinese Academy of Sciences, Beijing 100039, China 《Science China(Life Sciences)》 SCIE CAS 2008年第1期86-94,共9页
Alpine Kobresia meadows are major vegetation types on the Qinghai-Tibetan Plateau. There is growing concern over their relationships among biodiversity, productivity and environments. Despite the im-portance of specie... Alpine Kobresia meadows are major vegetation types on the Qinghai-Tibetan Plateau. There is growing concern over their relationships among biodiversity, productivity and environments. Despite the im-portance of species composition, species richness, the type of different growth forms, and plant bio-mass structure for Kobresia meadow ecosystems, few studies have been focused on the relationship between biomass and environmental gradient in the Kobresia meadow plant communities, particularly in relation to soil moisture and edaphic gradients. We measured the plant species composition, her-baceous litter, aboveground and belowground biomass in three Kobresia meadow plant communities in Haibei Alpine Meadow Ecosystem Research Station from 2001 to 2004. Community differences in plant species composition were reflected in biomass distribution. The total biomass showed a de-crease from 13196.96±719.69 g/m2 in the sedge-dominated K. tibetica swamp to 2869.58±147.52 g/m2 in the forb and sedge dominated K. pygmaea meadow, and to 2153.08±141.95 g/m2 in the forbs and grasses dominated K. humilis along with the increase of altitude. The vertical distribution of below-ground biomass is distinct in the three meadow communities, and the belowground biomass at the depth of 0-10 cm in K. tibetica swamp meadow was significantly higher than that in K. humilis and K. pygmaea meadows (P<0.01). The herbaceous litter in K. tibetica swamp was significantly higher than those in K. pygnaeca and K. humilis meadows. The effects of plant litter are enhanced when ground water and soil moisture levels are raised. The relative importance of litter and vegetation may vary with soil water availability. In the K. tibetica swamp, total biomass was negatively correlated to species richness (P<0.05); aboveground biomass was positively correlated to soil organic matter, soil moisture, and plant cover (P<0.05); belowground biomass was positively correlated with soil moisture (P<0.05). However, in the K. pygnaeca and K. humilis meadow communities, abo 展开更多
关键词 PLANT species richness PLANT litter ABOVEGROUND BIOMASS BELOWGROUND BIOMASS soil moisture alpine MEADOW
原文传递
Carbon Balance in an Alpine Steppe in the Qinghai-Tibet Plateau 被引量:29
11
作者 Zhi-Yong Pei Hua Ouyang +1 位作者 Cai-Ping Zhou Xing-Liang Xu 《Journal of Integrative Plant Biology》 SCIE CAS CSCD 2009年第5期521-526,共6页
Carbon fluxes were measured using a static chamber technique in an alpine steppe in the Qinghai-Tibet Plateau from July 2000 to July 2001. It was shown that carbon emissions decreased in autumn and increased in spring... Carbon fluxes were measured using a static chamber technique in an alpine steppe in the Qinghai-Tibet Plateau from July 2000 to July 2001. It was shown that carbon emissions decreased in autumn and increased in spring of the next year, with higher values in growth seasons than in winters. An exponential correlation (Ecarbon = 0.22(exp(0.09T) + In(0.31P + 1)), R^2 = 0.77, P 〈 0.001) was shown between carbon emissions and environmental factors such as temperature (T) and precipitation (P). Using the daily temperature (T) and total precipitation (R), annual carbon emission from soil to the atmosphere was estimated to be 79.6 g C/m^2, 46% of which was emitted by microbial respiration. Considering an average net primary production of 92.5 g C/m^2 per year within the 2 year experiment, alpine steppes can take up 55.9 g CO2-C/m^2 per year. This indicates that alpine steppes are a distinct carbon sink, although this carbon reservoir was quite small. 展开更多
关键词 alpine grassland carbon balance carbon flux net primary productivity Qinghai-Tibet Plateau
原文传递
Mapping the vegetation distribution of the permafrost zone on the Qinghai-Tibet Plateau 被引量:29
12
作者 WANG Zhi-wei WANG Qian +12 位作者 ZHAO Lin WU Xiao-dong YUE Guang-yang ZOU De-fu NAN Zhuo-tong LIU Guang-yue PANG Qiang-qiang FANG Hong-bing WU Tong-hua SHI Jian-zong JIAO Ke-qin ZHAO Yong-hua ZHANG Le-le 《Journal of Mountain Science》 SCIE CSCD 2016年第6期1035-1046,共12页
In this paper, an updated vegetation map of the permafrost zone in the Qinghai-Tibet Plateau (QTP) was delineated. The vegetation map model was extracted from vegetation sampling with remote sensing (RS) datasets ... In this paper, an updated vegetation map of the permafrost zone in the Qinghai-Tibet Plateau (QTP) was delineated. The vegetation map model was extracted from vegetation sampling with remote sensing (RS) datasets by decision tree method. The spatial resolution of the map is 1 km×1 kin, and in it the alpine swamp meadow is firstly distinguished in the high-altitude areas. The results showed that the total vegetated area in the permafrost zone of the QTP is 1,201,751 km2. In the vegetated region, 50,260 km2 is the areas of alpine swamp meadow, 583,909 km2 for alpine meadow, 332,754 km2 for alpine steppe, and 234,828 km2 for alpine desert. This updated vegetation map in permafrost zone of QTP could provide more details about the distribution of alpine vegetation types for studying the vegetation mechanisms in the land surface processes of highaltitude areas. 展开更多
关键词 High-altitude areas alpine vegetationtype Vegetation map alpine swamp meadow MODIS Decision tree
下载PDF
Landscape Pattern Evolution Processes of Alpine Wetlands and Their Driving Factors in the Zoige Plateau of China 被引量:30
13
作者 BAI Jun-hong LU Qiong-qiong +4 位作者 WANG Jun-jing ZHAO Qing-qing OUYANG Hua DENG Wei LI Ai-nong 《Journal of Mountain Science》 SCIE CSCD 2013年第1期54-67,共14页
Zoige Plateau wetlands are located in the northeastern corner of the Qinghai-Tibet Plateau.The landscape pattern evolution processes in the Zoige Plateau and their driving factors were identified by analyzing the dyna... Zoige Plateau wetlands are located in the northeastern corner of the Qinghai-Tibet Plateau.The landscape pattern evolution processes in the Zoige Plateau and their driving factors were identified by analyzing the dynamic changes in landscape modification and conversion and their dynamic rates of alpine wetlands over the past four decades.The results showed that the landscape conversion between wetlands and non-wetlands mainly occurred during the period from 1966 to 1986.The marsh wetland area converted from lake and river wetlands was larger because of swamping compared to other wetland landscapes.Meanwhile,the larger area of marsh wetlands was also converted to lake wetlands more than other types of wetlands.The modification processes mainly occurred among natural wetland landscapes in the first three periods.Obvious conversions were observed between wetland and nonwetland landscapes(i.e.,forestland,grassland,and other landscapes) in the Zoige Plateau.These natural wetland landscapes such as river,lake and marsh wetlands showed a net loss over the past four decades,whereas artificial wetland landscapes(i.e.,paddy field and reservoir and pond wetlands) showed a net decrease.The annual dynamic rate of the whole wetland landscape was 0.72%,in which the annual dynamic rate of river wetlands was the highest,followed by lake wetlands,while marsh wetlands had the lowest dynamic rate.The integrated landscape dynamic rate showed a decreasing trend in the first three periods.The changes in wetland landscape patterns were comprehensively controlled by natural factors and human activities,especially human activities play an important role in changing wetland landscape patterns. 展开更多
关键词 Zoige Plateau alpine wetland Landscape pattern Modification Conversion Driving factors
下载PDF
Effects of Temperature,Soil Moisture,Soil Type and Their Interactions on Soil Carbon Mineralization in Zoigê Alpine Wetland,Qinghai-Tibet Plateau 被引量:25
14
作者 GAO Junqin OUYANG Hua +2 位作者 LEI Guangchun XU Xingliang ZHANG Mingxiang 《Chinese Geographical Science》 SCIE CSCD 2011年第1期27-35,共9页
Wetland stores substantial amount of carbon and may contribute greatly to global climate change debate. However, few researches have focused on the effects of global climate change on carbon mineralization in Zoige al... Wetland stores substantial amount of carbon and may contribute greatly to global climate change debate. However, few researches have focused on the effects of global climate change on carbon mineralization in Zoige alpine wetland, Qinghai-Tibet Plateau, which is one of the most important peatlands in China. Through incubation experiment, this paper studied the effects of temperature, soil moisture, soil type (marsh soil and peat soil) and their interactions on CO2 and CH4 emission rates in Zoige alpine wetland. Results show that when the temperature rises from 5℃ to 35℃, CO2 emission rates increase by 3.3-3.7 times and 2.4-2.6 times under non-inundation treatment, and by 2.2-2.3 times and 4.1-4.3 times under inundation treatment in marsh soil and peat soil, respectively. Compared with non-inundation treatment, CO2 emission rates decrease by 6%-44%, 20%-60% in marsh soil and peat soil, respectively, under inundation treatment. CO2 emission rate is significantly affected by the combined effects of the temperature and soil type (p 〈 0.001), and soil moisture and soil type (p 〈 0.001), and CH4 emission rate was significantly affected by the interaction of the temperature and soil moisture (p 〈 0.001). Q10 values for CO2 emission rate are higher at the range of 5 ℃-25℃ than 25 ℃-35℃, indicating that carbon mineralization is more sensitive at low temperature in Zoige alpine wetland. 展开更多
关键词 alpine wetland carbon mineralization marsh soil peat soil soil moisture Qinghai-Tibet Plateau
下载PDF
Carbon Dioxide Exchange Between the Atmosphere and an Alpine Shrubland Meadow During the Growing Season on the Qinghai-Tibetan Plateau 被引量:23
15
作者 LiangZHAO Ying-NianLI +3 位作者 SongGU Xing-QuanZHAO Shi-XiaoXU Gui-RuiYU 《Journal of Integrative Plant Biology》 SCIE CAS CSCD 2005年第3期271-282,共12页
: In the present study, we used the eddy covariance method to measure CO2 exchange between the atmosphere and an alpine shrubland meadow ecosystem (37°36’N, 101°18’E; 3 250 m a.s.l.) on the Qinghai-Tibetan... : In the present study, we used the eddy covariance method to measure CO2 exchange between the atmosphere and an alpine shrubland meadow ecosystem (37°36’N, 101°18’E; 3 250 m a.s.l.) on the Qinghai-Tibetan Plateau, China, during the growing season in 2003, from 20 April to 30 September. This meadow is dominated by formations of Potentilla fruticosa L. The soil is Mol-Cryic Cambisols. During the study period, the meadow was not grazed. The maximum rates of CO2 uptake and release derived from the diurnal course of CO2 flux were -9.38 and 5.02 μmol·m-2·s-1, respectively. The largest daily CO2 uptake was 1.7 g C·m-2·d-1 on 14 July, which is less than half that of an alpine Kobresia meadow ecosystem at similar latitudes. Daily CO2 uptake during the measurement period indicated that the alpine shrubland meadow ecosystem may behave as a sink of atmospheric CO2 during the growing season. The daytime CO2 uptake was correlated exponentially or linearly with the daily photo synthetic photon flux density each month. The daytime average water use efficiency of the ecosystem was 6.47 mg CO2/g H2O. The efficiency of the ecosystem increased with a decrease in vapor pressure deficit. 展开更多
关键词 alpine shrubland meadow CO2 exchange Qinghai-Tibetan Plateau
原文传递
Establishment of apparent quantum yield and maximum ecosystem assimilation on Tibetan Plateau alpine meadow ecosystem 被引量:23
16
作者 XU Lingling, ZHANG Xianzhou, SHI Peili & YU Guirui Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China Graduate School of the Chinese Acedemy of Sciences, Beijing 100039, China 《Science China Earth Sciences》 SCIE EI CAS 2005年第z1期141-147,共7页
The alpine meadow is widely distributed on the Tibetan Plateau with an area of about 1.2×106km2. Damxung County, located in the hinterland of the Tibetan Plateau, is the place covered with this typical vegetation... The alpine meadow is widely distributed on the Tibetan Plateau with an area of about 1.2×106km2. Damxung County, located in the hinterland of the Tibetan Plateau, is the place covered with this typical vegetation. An open-path eddy covariance system was set up in Damxung rangeland station to measure the carbon flux of alpine meadow from July to October, 2003. The continuous carbon flux data were used to analyze the relationship between net ecosystem carbon dioxide exchange (NEE) and photosynthetically active radiation (PAR), as well as the seasonal patterns of apparent quantum yield (α) and maximum ecosystem assimilation (Pmax). Results showed that the daytime NEE fitted fairly well with the PAR in a rectangular hyperbola function, with α declining in the order of peak growth period (0.0244 μmolCO2 · μmol-1PAR) > early growth period > seed maturing period > withering period (0.0098 μmolCO2 · μmol-1PAR). The Pmax did not change greatly during the first three periods, with an average of 0.433 mgCO2 · m-2 · s-1,i.e. 9.829 μmolCO2 · m-2 · s-1. However, during the withering period, Pmax was only 0.35 mgCO2 · m-2 · s-1, i.e. 7.945 μmolCO2 · m-2 · s-1. Compared with other grassland ecosystems, the α of the Tibetan Plateau alpine meadow ecosystem was much lower. 展开更多
关键词 Tibetan Plateau alpine MEADOW ecosystem EDDY covariance apparent quantum yield MAXIMUM ECOSYSTEM assimilation.
原文传递
Effects of Grazing Exclusion on Plant Productivity and Soil Carbon, Nitrogen Storage in Alpine Meadows in Northern Tibet, China 被引量:22
17
作者 XIONG Dingpeng SHI Peili +2 位作者 SUN Yinliang WU Jianshuang ZHANG Xianzhou 《Chinese Geographical Science》 SCIE CSCD 2014年第4期488-498,共11页
Grazing exclusion is widely adopted in restoring degraded alpine grasslands on the Qinghai-Tibetan Plateau. However, its effectiveness remains poorly understood. In this study, we investigated the effects of grazing e... Grazing exclusion is widely adopted in restoring degraded alpine grasslands on the Qinghai-Tibetan Plateau. However, its effectiveness remains poorly understood. In this study, we investigated the effects of grazing exclusion on plant productivity, species diversity and soil organic carbon (SOC) and soil total nitrogen (STN) storage along a transect spanning from east to west of alpine meadows in northern Tibet, China. After six years of grazing exclusion, plant cover, aboveground biomass (AGB), belowground biomass (BGB), SOC and STN were increased, but species diversity indices declined. The enhancement of AGB and SOC caused by grazing exclusion was correlated positively with mean annual precipitation (MAP). Grazing exclusion led to remarkable biomass increase of sedge species, especially Kobresia pygmaea, whereas decrease of biomass in forbs and no obvious change in grass, leguminous and noxious species. Root biomass was concentrated in the near surface layer (10 cm) after grazing exclusion. The effects of grazing exclusion on SOC storage were confined to shallow soil layer in sites with lower MAP. It is indicated that grazing exclusion is an effective measure to increase forage production and enhance soil carbon sequestration in the studied region. The effect is more efficient in sites with higher precipitation. However, the results revealed a tradeoff between vegetation restoration and ecological biodiversity. Therefore, carbon pools recover more quickly than plant biodiversity in the alpine meadows. We suggest that grazing exclusion should be combined with other measures to reconcile grassland restoration and biodiversitv conservation. 展开更多
关键词 aboveground biomass belowground biomass soil organic carbon (SOC) soil total nitrogen (STN) BIODIVERSITY grazingexclusion PRECIPITATION alpine meadow
下载PDF
高寒牧区草地生态系统健康动态评价——以甘南地区为例 被引量:22
18
作者 赵玉婷 李文龙 +4 位作者 陈迪 余翠 赵新来 许静 郭旭临 《草业科学》 CAS CSCD 北大核心 2017年第1期16-29,共14页
基于"压力-状态-响应"(pressure-state-response,PSR)模型,从压力、状态、响应3个层面选取17个指标构建了甘南州高寒牧区草地生态系统健康评价体系。采用AHP层次分析法,对甘南州2001-2013年草地生态系统健康进行了动态评价,... 基于"压力-状态-响应"(pressure-state-response,PSR)模型,从压力、状态、响应3个层面选取17个指标构建了甘南州高寒牧区草地生态系统健康评价体系。采用AHP层次分析法,对甘南州2001-2013年草地生态系统健康进行了动态评价,并结合GIS/RS技术,分析了甘南州草地生态系统健康状况空间变化特征。评价结果表明,1)草地生态系统健康等级为低健康水平、较低健康水平、中等健康水平、较高健康水平及高健康水平的区域分别占总面积的3.82%、23.5%、0.82%、53.06%及18.81%。卓尼、舟曲、迭部、玛曲、碌曲草地生态系统为较高健康水平,合作、临潭、夏河为较低健康水平。2)近13年来,甘南州高寒牧区草地生态系统健康负向变化趋势明显,占总面积的68.01%,27.75%的面积呈稳定变化趋势,呈正向变化的区域仅占总面积的4.18%。 展开更多
关键词 高寒牧区 草地生态系统 健康评价 GIS/RS PSR模型 AHP分析
下载PDF
Soil Erosion and Vegetation Succession in Alpine Kobresia Steppe Meadow Caused by Plateau Pika——A Case Study of Nagqu County, Tibet 被引量:22
19
作者 WEI Xinghu LI Sen +1 位作者 Yang Ping Cheng Huaishun 《Chinese Geographical Science》 SCIE CSCD 2007年第1期75-81,共7页
This paper evaluated the impacts of mounds created by the plateau pika (Ochotona curzoniae) on the vegetation composition, structure, and species diversity of an alpine Kobresia steppe meadow in Nagqu County, Tibet ... This paper evaluated the impacts of mounds created by the plateau pika (Ochotona curzoniae) on the vegetation composition, structure, and species diversity of an alpine Kobresia steppe meadow in Nagqu County, Tibet Autonomous Region, China. Based on mound height or the depth of erosion pit, we defined five stages of erosion and compared the floristic features of communities at these stages with those in undisturbed sites. In the study area, the mounds and pits covered up to 7% of the total area. Lancea tibetica, Lamiophlomis rotata, and Potentilla biflarca were the dominant species in erosion pits, and Kobresia pygmaea, the dominant species in undisturbed sites, became a companion species in eroded areas. In the process of erosion, the original vegetation was covered by soil ejected by the pika, then the mounds were gradually eroded by wind and rain, and finally erosion pits formed. The vegetation coverage increased with increasing erosion stages but remained significantly lower than that in undisturbed sites. Improved coverage eventually reduced soil erosion, and pit depth eventually stabilized at around 20cm. Aboveground biomass increased with increasing erosion stage, but the proportion of low-quality forage reached more than 94%. The richness index and Shannon-Wiener index increased significantly with increasing erosion stage, but the richness index in mound and pit areas was significantly lower than that in undisturbed sites. 展开更多
关键词 plateau pika alpine Kobresia steppe meadow vegetation succession diversity TIBET
下载PDF
大陆碰撞造山样式与过程:来自特提斯碰撞造山带的实例 被引量:22
20
作者 张洪瑞 侯增谦 《地质学报》 EI CAS CSCD 北大核心 2015年第9期1539-1559,共21页
本文选取特提斯域内比利牛斯、阿尔卑斯、扎格罗斯、喜马拉雅-青藏高原四个地球上最年轻的陆-陆碰撞造山带,对其造山带结构、类型、物质组成、构造岩浆过程等方面进行详细介绍,进而讨论各个造山带的差异性及其缘由,分析碰撞造山普遍性... 本文选取特提斯域内比利牛斯、阿尔卑斯、扎格罗斯、喜马拉雅-青藏高原四个地球上最年轻的陆-陆碰撞造山带,对其造山带结构、类型、物质组成、构造岩浆过程等方面进行详细介绍,进而讨论各个造山带的差异性及其缘由,分析碰撞造山普遍性规律。资料分析表明,四个碰撞造山带具有不同的结构和组成。根据板块汇聚方向与造山带边界间的夹角可将造山带分为正向和斜向两种;根据造山带结构可将碰撞带分为对称式和不对称式两种。由此本文将碰撞造山带划分为四种基本式样:正向对称式、正向不对称式、斜向对称式、斜向不对称式,分别以比利牛斯、青藏高原、阿尔卑斯和扎格罗斯碰撞带为代表。综合分析四个造山带碰撞以来的岩浆构造活动,本文发现完整的碰撞过程可以划分为三个阶段,第一阶段主要发生挤压缩短、地壳加厚,高压变质和钙碱性火山岩浆活动;第二阶段以大规模走滑系统发育和高钾钙碱性或钾质火山岩浆作用为特征;第三个阶段挤压应力向碰撞带两侧扩展,同时伴有大型伸展构造系统的发育。在这三阶段演化历程中,比利牛斯只进行到第一阶段,成为幼年夭折的碰撞带;扎格罗斯进行到第二阶段,出现调节挤压应变的走滑系统和钾质超钾质岩浆活动;青藏高原和阿尔卑斯进行到第三个阶段,以发育大型伸展构造和钾质、超钾质岩浆活动为特征,但后者在造山带物质组成和汇聚速率方面显示出比前者更成熟的造山演化程度。因此认为岩石圈组成是碰撞造山带结构的主要控制因素,如果上覆板块具有相对不稳定的岩石圈,会使得碰撞带后陆发育宽广的构造岩浆带,造成造山带呈不对称式结构。 展开更多
关键词 比利牛斯 阿尔卑斯 扎格罗斯 青藏高原 碰撞造山带 欧亚大陆南缘
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部