New theories and technology in the electromagnetic field were put forward about DC casting of Al alloys, including the fundamental research works, i.e, effects of the electromagnetic field on solidus and liquidus, mac...New theories and technology in the electromagnetic field were put forward about DC casting of Al alloys, including the fundamental research works, i.e, effects of the electromagnetic field on solidus and liquidus, macrosegregation of the main alloying elements, microstructures, content of alloying elements in grains and grain size after solidification under electromagnetic field, and also including a new process DC casting under low frequency electromagnetic field(LFEMC), which can refine microstructure, eliminate macrosegregation, increase the content of alloying elements within grains, decrease the residual stress, avoid cracks and improve surface quality, and another new process DC casting under low frequency electromagnetic vibration(LFEVC), which is a high effective method for grain refining.展开更多
The effect of excitation current intensity on the mechanical properties of ZL205 A castings solidified under a traveling magnetic field was studied. The results of the experiment indicate that the excitation current i...The effect of excitation current intensity on the mechanical properties of ZL205 A castings solidified under a traveling magnetic field was studied. The results of the experiment indicate that the excitation current intensity of the traveling magnetic field has a great influence on the mechanical properties of the ZL205 A castings. When the excitation current intensity is 15 A, the tensile strength and elongation of ZL205 A alloy castings increase 27.2% and 67.7%, respectively, compared with those of the same alloy solidified under gravity. The improvement of mechanical properties is attributed to the decrease of micro-porosity in the alloy. Under the traveling magnetic field, the feeding pressure in the alloy melt before solidification can be enhanced due to the electromagnetic force. Moreover, the melt flow induced by the traveling magnetic field can decrease the temperature gradient. The feeding resistance will be increased because the temperature gradient decrease. So traveling magnetic field has an optimum effect on feeding.展开更多
Stress intensity factors of thin AZ31B magnesium alloy sheet under biaxial tension loading were analyzed by modified Dugdale model. K-values with crack angle of 90° obviously show that there is no influence of th...Stress intensity factors of thin AZ31B magnesium alloy sheet under biaxial tension loading were analyzed by modified Dugdale model. K-values with crack angle of 90° obviously show that there is no influence of the loading condition in Mode-I. In the 45° case, K1 values are obtained within 10% errors when they are calculated by modified Dugdale model under biaxial loading. It is concluded that the modified Dugdale model is one of effective ways to evaluate stress intensity factor of AZ31 magnesium alloy sheet appropriately.展开更多
文摘New theories and technology in the electromagnetic field were put forward about DC casting of Al alloys, including the fundamental research works, i.e, effects of the electromagnetic field on solidus and liquidus, macrosegregation of the main alloying elements, microstructures, content of alloying elements in grains and grain size after solidification under electromagnetic field, and also including a new process DC casting under low frequency electromagnetic field(LFEMC), which can refine microstructure, eliminate macrosegregation, increase the content of alloying elements within grains, decrease the residual stress, avoid cracks and improve surface quality, and another new process DC casting under low frequency electromagnetic vibration(LFEVC), which is a high effective method for grain refining.
基金financially supported by the National Basic Research Program of China(2011CB610406)the Natural Science Foundation of Hei Longjiang Province(JC201209)the National Natural Science Foundation of China(51425402)
文摘The effect of excitation current intensity on the mechanical properties of ZL205 A castings solidified under a traveling magnetic field was studied. The results of the experiment indicate that the excitation current intensity of the traveling magnetic field has a great influence on the mechanical properties of the ZL205 A castings. When the excitation current intensity is 15 A, the tensile strength and elongation of ZL205 A alloy castings increase 27.2% and 67.7%, respectively, compared with those of the same alloy solidified under gravity. The improvement of mechanical properties is attributed to the decrease of micro-porosity in the alloy. Under the traveling magnetic field, the feeding pressure in the alloy melt before solidification can be enhanced due to the electromagnetic force. Moreover, the melt flow induced by the traveling magnetic field can decrease the temperature gradient. The feeding resistance will be increased because the temperature gradient decrease. So traveling magnetic field has an optimum effect on feeding.
文摘Stress intensity factors of thin AZ31B magnesium alloy sheet under biaxial tension loading were analyzed by modified Dugdale model. K-values with crack angle of 90° obviously show that there is no influence of the loading condition in Mode-I. In the 45° case, K1 values are obtained within 10% errors when they are calculated by modified Dugdale model under biaxial loading. It is concluded that the modified Dugdale model is one of effective ways to evaluate stress intensity factor of AZ31 magnesium alloy sheet appropriately.