目的采用高效液相色谱-四极杆飞行时间串联质谱(HPLC-Q-TOF-MS/MS)挖掘益肾化湿颗粒的主要成分,并结合网络药理学探究益肾化湿颗粒治疗IgA肾病的作用靶点及机制。方法采用质谱技术对益肾化湿颗粒主要成分进行准确定性,并运用TCMSP、ETCM...目的采用高效液相色谱-四极杆飞行时间串联质谱(HPLC-Q-TOF-MS/MS)挖掘益肾化湿颗粒的主要成分,并结合网络药理学探究益肾化湿颗粒治疗IgA肾病的作用靶点及机制。方法采用质谱技术对益肾化湿颗粒主要成分进行准确定性,并运用TCMSP、ETCM、SymMAP数据库获得活性成分靶点;采用GeneCards、OMIM等数据库获得IgA肾病的疾病靶点,对药效疾病靶点进行基因本体(gene ontology,GO)富集分析及京都基因与基因组百科全书(Kyoto encyclopedia of genes and genomes,KEGG)通路分析,进一步运用Cytoscape_v3.8.2构建“活性成分-靶点-通路”网络;应用Atuodock软件对筛选靶点及主要活性成分进行分子对接,进行结合位点模拟验证。结果共鉴定出益肾化湿颗粒主要成分68个,包括香豆素类、三萜类和黄酮类等化合物;共获得益肾化湿颗粒治疗IgA肾病活性成分43个,活性成分与疾病交集靶点74个,其中包括过氧化物酶体增殖物激活受体γ、皮质醇受体基因等;涉及通路包括肿瘤坏死因子信号通路、磷脂酰肌醇3激酶/蛋白激酶B信号通路、晚期糖基化产物-晚期糖基化终末产物受体信号通路等。分子对接结果显示,柴胡皂苷A、黄芪甲苷III、黄芪甲苷IV、泽泻醇A与IgA肾病的预测靶点有良好的结合活性。结论益肾化湿颗粒能够通过抗炎、调节免疫、改善类固醇效应等治疗IgA肾病,具有多成分、多靶点、多途径的特点。展开更多
Objective Obesity is a global health concern with management strategies encompassing bariatric surgery and anti-obesity drugs;however,concerns regarding complexities and side effects persist,driving research for more ...Objective Obesity is a global health concern with management strategies encompassing bariatric surgery and anti-obesity drugs;however,concerns regarding complexities and side effects persist,driving research for more effective,low-risk strategies.The promotion of white adipose tissue(WAT)browning has emerged as a promising approach.Moreover,alisol B 23-acetate(AB23A)has demonstrated efficacy in addressing metabolic disorders,suggesting its potential as a therapeutic agent in obesity management.Therefore,in this study,we aimed to investigate the therapeutic potential of AB23A for mitigating obesity by regulating metabolic phenotypes and lipid distribution in mice fed a high-fat diet(HFD).Methods An obesity mouse model was established by administration of an HFD.Glucose and insulin metabolism were assessed via glucose and insulin tolerance tests.Adipocyte size was determined using hematoxylin and eosin staining.The expression of browning markers in WAT was evaluated using Western blotting and quantitative real-time polymerase chain reaction.Metabolic cage monitoring involved the assessment of various parameters,including food and water intake,energy metabolism,respiratory exchange rates,and physical activity.Moreover,oil red O staining was used to evaluate intracellular lipid accumulation.A bioinformatic analysis tool for identifying the molecular mechanisms of traditional Chinese medicine was used to examine AB23A targets and associated signaling pathways.Results AB23A administration significantly reduced the weight of obese mice,decreased the mass of inguinal WAT,epididymal WAT,and perirenal adipose tissue,improved glucose and insulin metabolism,and reduced adipocyte size.Moreover,treatment with AB23A promoted the expression of browning markers in WAT,enhanced overall energy metabolism in mice,and had no discernible effect on food intake,water consumption,or physical activity.In 3T3-L1 cells,AB23A inhibited lipid accumulation,and both AB23A and rapamycin inhibited the mammalian target of rapamycin-sterol regulato展开更多
AIM: To examine the effect of alisol B acetate on the growth of human gastric cancer cell line SGC7901 and its possible mechanism of action.METHODS: The cytotoxic effect of alisol B acetate on SGC7901 cells was meas...AIM: To examine the effect of alisol B acetate on the growth of human gastric cancer cell line SGC7901 and its possible mechanism of action.METHODS: The cytotoxic effect of alisol B acetate on SGC7901 cells was measured by 3-(4,5-dimethylthiazol- 2-yl)-2,5-diphenyltetrazolium bromide (MI-I-) assay. Phase-contrast and electron microscopy were used to observe the morphological changes. Cell cycle and mitochondrial transmembrane potential (A^Pm) were determined by flow cytometry. Western blotting was used to detect the expression of apoptosis-regulated gene Bcl-2, Bax, Apaf-1, caspase-3, caspase-9, Akt, P-Akt and phosphatidylinositol 3-kinases (PI3K).RESULTS: Alisol B acetate inhibited the proliferation of SGC7901 cell line in a time- and dose-dependent manner. PI staining showed that alisol B acetate can change the cell cycle distribution of SGC7901, increase the proportion of cells in G0-G1 phase and decrease the proportion of S phase cells and G2-M phase cells. Alisol B acetate at a concentration of 30 pmol/L induced apoptosis after 24, 48 and 72 h incubation, with occurrence rates of apoptotic cells of 4.36%, 14.42% and 21.16%, respectively. Phase-contrast and electron microscopy revealed that the nuclear fragmentation and chromosomal condensed, cells shrank and attachment loss appeared in the SGC7901 treated with alisol B acetate. Apoptosis of SGC7901 cells was associated with cell cycle arrest, caspase-3 and caspase-9 activation, loss of mitochondrial membrane potential and up-regulation of the ratio of Bax/Bcl-2 and inhibition of the PI3K/Akt.CONCLUSION: Alisol B acetate exhibits an antiproliferative effect in SGC7901 cells by inducing apoptosis. Apoptosis of SGC7901 cells involves mitochondria-caspase and PI3K/Akt dependent pathways.展开更多
Objective: The present study aimed to investigate the molecular events in alisol B 23-acetate(ABA) cytotoxic activity against a liver cancer cell line.Methods: First, we employed a quantitative proteomics approach bas...Objective: The present study aimed to investigate the molecular events in alisol B 23-acetate(ABA) cytotoxic activity against a liver cancer cell line.Methods: First, we employed a quantitative proteomics approach based on stable isotope labeling by amino acids in cell culture(SILAC) to identify the different proteins expressed in HepG2 liver cancer cells upon exposure to ABA. Next, bioinformatics analyses through DAVID and STRING on-line tools were used to predict the pathways involved. Finally, we applied functional validation including cell cycle analysis and Western blotting for apoptosis and mTOR pathway-related proteins to confirm the bioinformatics predictions.Results: We identified 330 different proteins with the SILAC-based quantitative proteomics approach. The bioinformatics analysis and the functional validation revealed that the mTOR pathway, ribosome biogenesis, cell cycle, and apoptosis pathways were differentially regulated by ABA. G1 cell cycle arrest, apoptosis and mTOR inhibition were confirmed.Conclusions: ABA, a potential mTOR inhibitor, induces the disruption of ribosomal biogenesis. It also affects the mTOR-MRP axis to cause G1 cell cycle arrest and finally leads to cancer cell apoptosis.展开更多
A sensitive and reliable ultra fast liquid chromatography tandem mass spectrometry(UFLC-MS/MS)method has been developed and validated for simultaneous quantitation of alisol A and alisol B 23-acetate from Alisma orien...A sensitive and reliable ultra fast liquid chromatography tandem mass spectrometry(UFLC-MS/MS)method has been developed and validated for simultaneous quantitation of alisol A and alisol B 23-acetate from Alisma orientale(Sam.)Juz.in rat plasma using diazepam as an internal standard(IS).The plasma samples were extracted by liquideliquid extraction with methyl tert-butyl ether and separated on a Venusil MP C18 column(100 mm×2.1 mm,3.0 mm)(Venusil,China)using gradient elution with the mobile phase consisting of methanol and 0.1%acetic acid in water at a flow rate of 0.4 ml/min.The two analytes were monitored with positive electrospray ionization by multiple reaction monitoring mode(MRM).The lower limit of quantitation was 5.00 ng/ml for alisol A and 5.00 ng/ml for alisol B 23-acetate.The calibration curves were linear in the range of 5.00 e2500 ng/ml for alisol A and 5e2500 ng/ml for alisol B 23-acetate.The mean extraction recoveries were above 63.8%for alisol A and 68.0%for alisol B 23-acetate from biological matrixes.Both intra-day and inter-day precision and accuracy of analytes were well within acceptance criteria(15%).The validated method was successfully applied to the pharmacokinetic study of alisol A and alisol B 23-acetate in rat plasma after oral administration of alcohol extract of Alismatis Rhizoma.展开更多
文摘目的采用高效液相色谱-四极杆飞行时间串联质谱(HPLC-Q-TOF-MS/MS)挖掘益肾化湿颗粒的主要成分,并结合网络药理学探究益肾化湿颗粒治疗IgA肾病的作用靶点及机制。方法采用质谱技术对益肾化湿颗粒主要成分进行准确定性,并运用TCMSP、ETCM、SymMAP数据库获得活性成分靶点;采用GeneCards、OMIM等数据库获得IgA肾病的疾病靶点,对药效疾病靶点进行基因本体(gene ontology,GO)富集分析及京都基因与基因组百科全书(Kyoto encyclopedia of genes and genomes,KEGG)通路分析,进一步运用Cytoscape_v3.8.2构建“活性成分-靶点-通路”网络;应用Atuodock软件对筛选靶点及主要活性成分进行分子对接,进行结合位点模拟验证。结果共鉴定出益肾化湿颗粒主要成分68个,包括香豆素类、三萜类和黄酮类等化合物;共获得益肾化湿颗粒治疗IgA肾病活性成分43个,活性成分与疾病交集靶点74个,其中包括过氧化物酶体增殖物激活受体γ、皮质醇受体基因等;涉及通路包括肿瘤坏死因子信号通路、磷脂酰肌醇3激酶/蛋白激酶B信号通路、晚期糖基化产物-晚期糖基化终末产物受体信号通路等。分子对接结果显示,柴胡皂苷A、黄芪甲苷III、黄芪甲苷IV、泽泻醇A与IgA肾病的预测靶点有良好的结合活性。结论益肾化湿颗粒能够通过抗炎、调节免疫、改善类固醇效应等治疗IgA肾病,具有多成分、多靶点、多途径的特点。
基金supported by Shandong Provincial Natural Science Foundation General Program(No.ZR2022MH213)Shandong Provincial Traditional Chinese Medicine Science and Technology Project General Program(No.M2023241)+1 种基金Jinan Clinical Medical Science and Technology Innovation Program(No.202328013)Qinghai Province High-end Innovative Talents Thousand Talents Program.
文摘Objective Obesity is a global health concern with management strategies encompassing bariatric surgery and anti-obesity drugs;however,concerns regarding complexities and side effects persist,driving research for more effective,low-risk strategies.The promotion of white adipose tissue(WAT)browning has emerged as a promising approach.Moreover,alisol B 23-acetate(AB23A)has demonstrated efficacy in addressing metabolic disorders,suggesting its potential as a therapeutic agent in obesity management.Therefore,in this study,we aimed to investigate the therapeutic potential of AB23A for mitigating obesity by regulating metabolic phenotypes and lipid distribution in mice fed a high-fat diet(HFD).Methods An obesity mouse model was established by administration of an HFD.Glucose and insulin metabolism were assessed via glucose and insulin tolerance tests.Adipocyte size was determined using hematoxylin and eosin staining.The expression of browning markers in WAT was evaluated using Western blotting and quantitative real-time polymerase chain reaction.Metabolic cage monitoring involved the assessment of various parameters,including food and water intake,energy metabolism,respiratory exchange rates,and physical activity.Moreover,oil red O staining was used to evaluate intracellular lipid accumulation.A bioinformatic analysis tool for identifying the molecular mechanisms of traditional Chinese medicine was used to examine AB23A targets and associated signaling pathways.Results AB23A administration significantly reduced the weight of obese mice,decreased the mass of inguinal WAT,epididymal WAT,and perirenal adipose tissue,improved glucose and insulin metabolism,and reduced adipocyte size.Moreover,treatment with AB23A promoted the expression of browning markers in WAT,enhanced overall energy metabolism in mice,and had no discernible effect on food intake,water consumption,or physical activity.In 3T3-L1 cells,AB23A inhibited lipid accumulation,and both AB23A and rapamycin inhibited the mammalian target of rapamycin-sterol regulato
文摘AIM: To examine the effect of alisol B acetate on the growth of human gastric cancer cell line SGC7901 and its possible mechanism of action.METHODS: The cytotoxic effect of alisol B acetate on SGC7901 cells was measured by 3-(4,5-dimethylthiazol- 2-yl)-2,5-diphenyltetrazolium bromide (MI-I-) assay. Phase-contrast and electron microscopy were used to observe the morphological changes. Cell cycle and mitochondrial transmembrane potential (A^Pm) were determined by flow cytometry. Western blotting was used to detect the expression of apoptosis-regulated gene Bcl-2, Bax, Apaf-1, caspase-3, caspase-9, Akt, P-Akt and phosphatidylinositol 3-kinases (PI3K).RESULTS: Alisol B acetate inhibited the proliferation of SGC7901 cell line in a time- and dose-dependent manner. PI staining showed that alisol B acetate can change the cell cycle distribution of SGC7901, increase the proportion of cells in G0-G1 phase and decrease the proportion of S phase cells and G2-M phase cells. Alisol B acetate at a concentration of 30 pmol/L induced apoptosis after 24, 48 and 72 h incubation, with occurrence rates of apoptotic cells of 4.36%, 14.42% and 21.16%, respectively. Phase-contrast and electron microscopy revealed that the nuclear fragmentation and chromosomal condensed, cells shrank and attachment loss appeared in the SGC7901 treated with alisol B acetate. Apoptosis of SGC7901 cells was associated with cell cycle arrest, caspase-3 and caspase-9 activation, loss of mitochondrial membrane potential and up-regulation of the ratio of Bax/Bcl-2 and inhibition of the PI3K/Akt.CONCLUSION: Alisol B acetate exhibits an antiproliferative effect in SGC7901 cells by inducing apoptosis. Apoptosis of SGC7901 cells involves mitochondria-caspase and PI3K/Akt dependent pathways.
基金supported by the National Natural Science Foundation of China (No. NSFC-81502406, 81673320)Education Scientific Research Project for young teachers, 2018 (No. JT180013)
文摘Objective: The present study aimed to investigate the molecular events in alisol B 23-acetate(ABA) cytotoxic activity against a liver cancer cell line.Methods: First, we employed a quantitative proteomics approach based on stable isotope labeling by amino acids in cell culture(SILAC) to identify the different proteins expressed in HepG2 liver cancer cells upon exposure to ABA. Next, bioinformatics analyses through DAVID and STRING on-line tools were used to predict the pathways involved. Finally, we applied functional validation including cell cycle analysis and Western blotting for apoptosis and mTOR pathway-related proteins to confirm the bioinformatics predictions.Results: We identified 330 different proteins with the SILAC-based quantitative proteomics approach. The bioinformatics analysis and the functional validation revealed that the mTOR pathway, ribosome biogenesis, cell cycle, and apoptosis pathways were differentially regulated by ABA. G1 cell cycle arrest, apoptosis and mTOR inhibition were confirmed.Conclusions: ABA, a potential mTOR inhibitor, induces the disruption of ribosomal biogenesis. It also affects the mTOR-MRP axis to cause G1 cell cycle arrest and finally leads to cancer cell apoptosis.
基金This study was financially supported by Liaoning Innovative Research Team in University(LNIRT,Grant No.LT2013022).
文摘A sensitive and reliable ultra fast liquid chromatography tandem mass spectrometry(UFLC-MS/MS)method has been developed and validated for simultaneous quantitation of alisol A and alisol B 23-acetate from Alisma orientale(Sam.)Juz.in rat plasma using diazepam as an internal standard(IS).The plasma samples were extracted by liquideliquid extraction with methyl tert-butyl ether and separated on a Venusil MP C18 column(100 mm×2.1 mm,3.0 mm)(Venusil,China)using gradient elution with the mobile phase consisting of methanol and 0.1%acetic acid in water at a flow rate of 0.4 ml/min.The two analytes were monitored with positive electrospray ionization by multiple reaction monitoring mode(MRM).The lower limit of quantitation was 5.00 ng/ml for alisol A and 5.00 ng/ml for alisol B 23-acetate.The calibration curves were linear in the range of 5.00 e2500 ng/ml for alisol A and 5e2500 ng/ml for alisol B 23-acetate.The mean extraction recoveries were above 63.8%for alisol A and 68.0%for alisol B 23-acetate from biological matrixes.Both intra-day and inter-day precision and accuracy of analytes were well within acceptance criteria(15%).The validated method was successfully applied to the pharmacokinetic study of alisol A and alisol B 23-acetate in rat plasma after oral administration of alcohol extract of Alismatis Rhizoma.